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Abstract: NICE—Noise Interactive Catalogue Explorer—is a web service developed for rapid-
qualitative glitch analysis in gravitational wave data. Glitches are transient noise events that can
smother the gravitational wave signal in data recorded by gravitational wave interferometer detec-
tors. NICE provides interactive graphical tools to support detector noise characterization activities,
in particular, the analysis of glitches from past and current observing runs, passing from glitch
population visualization to individual glitch characterization. The NICE back-end API consists
of a multi-database structure that brings order to glitch metadata generated by external detector
characterization tools so that such information can be easily requested by gravitational wave sci-
entists. Another novelty introduced by NICE is the interactive front-end infrastructure focused
on glitch instrumental and environmental origin investigation, which uses labels determined by
their time–frequency morphology. The NICE domain is intended for integration with the Advanced
Virgo, Advanced LIGO, and KAGRA characterization pipelines and it will interface with systematic
classification activities related to the transient noise sources present in the Virgo detector.

Keywords: gravitational wave; interferometer; web-application; LIGO; Virgo; KAGRA; detector
characterization; glitch; noise

1. Introduction

Advanced LIGO [1], Advanced Virgo [2], and KAGRA [3] are gravitational wave (GW)
detectors developed as kilometers-long Michelson interferometers, with a complex optical
and mechanical design used for reducing most environmental and experimental noise. GWs
are linear perturbations of the space–time metric, as predicted by Einstein’s field equations,
and were discovered in 2016 by the LIGO and Virgo scientists in the form of a binary black
hole coalescence signal [4]. This event was named GW150914 and was detected during the
first observing run, named O1, using data from the two Advanced LIGO interferometers,
thus opening the era of GW astronomy. During the second observing run (O2) there were
other important milestones such as the first three-interferometer detection (GW170814)
with Advanced Virgo [5] and the first multi-messenger observation of a merging binary
neutron star system (GW170817) [6–8].

From April 2019 to March 2020, during the third observing run (O3, subsequently
divided into O3a and O3b), which included Advanced LIGO, Advanced Virgo, and (for the
last days of the run) KAGRA, the rate of identification of GW candidates grew significantly,
reaching a total of 93 GW events confirmed as compact binary coalescences [9–12]. GW
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signal detection is the result of a complex analysis that extracts GW signals from a continu-
ous noise signal originating from different sources. Many of these sources are the result
of stochastic processes that can be modeled to be stationary and Gaussian [1–3]. There
are also both non-stationary and non-Gaussian noise artifacts, which can be transient or
persistent in the detector, whose presence affects the data quality of the “strain channel”
(where the passage of GW is recorded) [13].

The analysis of GW signals deals with non-Gaussian transient noise sources of in-
strumental or environmental origin, known as “glitches”, that reduce the significance of
signal detection and introduce systematic errors in the estimate of astrophysical source
parameters [14]. The glitch rate is much higher than the GW event rate and many glitches
can mimic the presence of transient GWs [15], thus increasing the probability of a false
alarm [10,11,14]. Therefore, studying glitches is a crucial point for characterizing a detector
and increasing its sensitivity.

Most glitch studies are based on characterization in the time–frequency domain.
Glitches are usually detected through algorithms named event trigger generators (ETGs),
such as Omicron [16]. ETGs exploit various methods to detect transient events, e.g., excess
power, and produce metadata describing glitches, such as peak time or frequency range [17].
Omicron is used also for time correlation studies (see Section 5 for details) and includes
both the strain channel and the data from environmental and instrumental sensors, which
are located all around the experimental apparatus and are known as “auxiliary channels”.
This study is carried out to understand the coupling mechanism at glitch origin.

In addition to correlation studies, glitches can be also identified with time–frequency
patterns presented in spectrograms or Q-scans. These are the results of the Q-transform
application, which leads to a rapid visualization of a transient event, characterizing it
from a morphological point of view [18,19]. The Q-transform produces a multi-resolution
time–frequency map of the noise excess, based on a transform whose resolution can be
parameterized using a quality factor Q = fc/σf , where fc is the central frequency and σf
the bandwidth. For more information see [20].

Glitch morphology identification is called “classification” and helps understand the
origin of a glitch population that presents common time–frequency patterns, often found
recurrent in some auxiliary channels.

In GW detector characterization, it is important to return a quick response during the
validation of a trigger, which consists of evaluating if there is the presence of a glitch nearby
a transient GW signal event candidate [10]. Alerts related to candidate GW events are sent
to astronomers for potential electromagnetic follow-up.

The possibility to perform a rapid and interactive analysis of glitches is important
in the analysis of transient GW signals, whose rate is growing with the improvement in
advanced detector sensitivity. Web-based systems designed to monitor the status of the
various subsystems of the detector, as well as environmental conditions, are systematically
used for these detector characterization activities [21,22]. However, to date, in the Virgo and
LIGO collaboration, there is no dedicated web-based tool specifically designed to perform
a quick-look analysis of glitches. We have developed the Noise Interactive Catalogue
Explorer (NICE) in this context. This is a web interface with a back-end database containing
the glitch information found by ETGs. NICE provides a dynamic on-demand computing
environment, a user-controllable view of data, and quick-look analysis tools for glitches.
It allows us to easily visualize glitch rates for different glitch populations, suitable for
detector characterization and noise-hunting activities. NICE also allows the visualization
of the classification information for each glitch (called “class label”), allowing scientists to
study and compare glitches of the same morphology, as well as study morphology in the
strain channel and compare that with that of glitches in auxiliary channels. Class labels
and high interactivity represent some of the main innovations among other web-based
monitors. NICE has been developed to facilitate the work of scientists, presenting them
with an end-to-end workflow to solve problems related to noise contamination. Since
there are still ongoing citizen science projects for glitch classification, and since NICE was
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developed post-O3, the software does not contain classified glitches and is not already
used for vetting GW event candidates. For these reasons, its functionality and its impact on
detector characterization are shown here taking into account strain data with simulated
glitches and their relative classification labels.

The rest of this work is divided into the following sections. In Section 2, there is a
summary of the related tools used to monitor GW detector noise and how NICE proposes to
overcome their limits. In Section 3, there is a detailed description of the software architecture
and workflow, with a particular focus on event validation use cases. In Section 4, there
is an example application on simulated glitches that are common in the Virgo detector.
Section 5 contains the impact of this tool on the detector characterization done with the
pipelines available to LIGO, Virgo, and KAGRA members, together with the integration
proposed for class labels coming from citizen science activities. Section 6 contains a brief
discussion of NICE application and structural limits and how authors foresee overcoming
these. Finally, Section 7 presents the conclusion regarding this new technology alongside
possible future applications.

2. Related Work

The NICE web service is proposed as a new integration to the monitoring system of
Virgo detector noise. There are various analysis tools for monitoring the Virgo detector as
follows [23]:

• The dataDisplay: software that allows users to read Virgo data from all available
channels and visualize various types of plots for detector characterization (e.g., spec-
trograms or coherence tests) [24];

• The detector monitoring system (DMS): a web monitor of the Virgo detector hardware
components [21,22];

• The Virgo interferometer monitor (VIM): a web service running a series of scripts that
update periodically plots and tables like the ones provided by dataDisplay [25,26].

All these tools offer a graphic interface to easily manage and analyze data quality, but
only the third one contains a script specific to glitches. Furthermore, such graphical inter-
faces do not allow interactive editing of plots and tables, which are saved as static images
in a database, and have access to glitch metadata that does not include classification labels.

For LIGO detectors, there is still a wide range of tools used to monitor data quality and
characterize the detectors [27–29], incorporating also the classification labels of a dedicated
citizen science project [30].

NICE proposes to fill these gaps within the Virgo noise analysis chain and presents
software within an interactive graphic interface, which is described in Section 3.

3. Software Description

The NICE v1 software provides interactive graphical plots for the study of glitch
populations and data analysis tools for the origin and morphology investigation of a single
glitch component. In this Section, the software components (Section 3.1), along with the
most frequent cases of interest for detector characterization (Section 3.2), are described.

3.1. The Tool’s Architecture

The NICE architecture is illustrated in Figure 1. Its interface communicates with a
multiple-database infrastructure, which we will refer to as “GlitchDB”, specifically designed
to store the metadata for a high number of glitches recorded in the GW data from the O2
run onward. To date, the database contains metadata about glitches calculated by Omicron
on Virgo strain and auxiliary channels (see Section 3.1.1 for more details) [17]. The NICE
interface presents a Homepage shown in Figure 2, which allows two investigation approaches
to users. The first investigation approach returns glitch metadata in a table format and is
carried out through the Search button. The second approach to making a glitch request is
through the Plot button. This opens the Interactive Plot Window (IPW), which is a tool
dedicated to the visualization of the distribution of glitches around a reference time (see
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Section 3.1.3 for more details). Clicking on a single peak time of the glitch table obtained
with the Search button, or similarly, on the glitch scatter point of the IPW graph, it is
possible to access the Single Glitch Analysis Window (SGAW), which uses strain and
auxiliary data for the single glitch analysis (see Section 3.1.4 for more details).

Figure 1. Overview of the glitch analysis workflow done with NICE tools. This starts from the request
to the GlitchDB through the NICE web service. The user can directly download the glitch metadata
list in CSV format, or use the IPW and SGAW tools to analyze glitch data together with strain and
auxiliary data. The workflow schema is organized as follows: light-blue blocks represent the software
input data (e.g., the glitch metadata from the O2, O3, and O4 runs), and green blocks represent the
tools presented in this paper, which return the outputs described in the black blocks.

Figure 2. The NICE Homepage—Visualizing simulated glitches. The scatter plot in the center reports
the metadata corresponding to peak time (x-axis), and central frequency (y-axis, logarithmic scale) of
triggers in the time interval of ∼18 min from 00:00 of 2 August 2017. If the collaboration is acquiring
data, this page shows real Virgo glitches collected during the last 24 h.
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3.1.1. Database Infrastructure for Glitches

The GlitchDB is the back-end component of NICE. It consists of multiple storage units,
illustrated in Figure 1. GlitchDB is built and managed with pymysql 0.9.3 modules [31]
and was made to support foreign-key references and null table elements. Its creation was
necessary to enable the use of a single structure for the storage of all glitches affecting the
detectors, which reaches ∼107 triggers for each observing run (as counted by NICE). The
metadata stored in it is freely accessible to LIGO, Virgo, and KAGRA members. GlitchDB
comprises one database per observing run, used as archives in high-latency servers. In
addition, one database is available for periodic uploads of real-time glitch metadata and
will be devoted to the next runs’ detector characterization stages. This multi-database
organization has been set up to optimize the request stage, given that a median glitch
rate of ∼1 trigger per minute was archived in a single strain channel during O3b [11]. We
chose this database organization for retrieving both the archived glitch metadata and the
ongoing glitch information generated in the current observing run within a single request
unit. Indeed, ETGs like Omicron generate metadata that is not located on the same server
during the different runs. For this reason, this project needed to create a new memory unit
containing the full history of ETG triggers.

Omicron has been chosen as the ETG for this project for its low-latency results, which
are easily converted for integration into the GlitchDB architecture. For future detector runs,
NICE will be automatically filled with Omicron low-latency results using the cron-job
(cron-job.org: https://cron-job.org/en/, accessed on 12 April 2024) utility. Thanks to its
flexibility, GlitchDB is ready to host other metadata generated by other ETGs, such as the
triggers from PyCBC [32].

3.1.2. Glitch Request Page

According to the user analysis goal, it is possible to send queries to GlitchDB by
clicking on both the Search and Plot buttons and passing the following glitch parameters:

• GPS-time (all data are stored in the GPS time system, which is the number of seconds
from 00:00 of 6 January 1980) interval;

• Central frequency range;
• Minimum and maximum signal-to-noise ratio (SNR) values;
• ETG name(s) that generated the glitch’s metadata;
• Channel name(s), i.e., the LIGO–Virgo–KAGRA strain channels and/or the most

interesting auxiliary channels, which are usually called “first-look channels”;
• Class label(s) and/or select glitches that are not classified in the database.

Glitch SNR is defined here as the amplitude of the Q-transform coefficients of the
whitened data (there is more information in [16,17]). Then, the first-look channels are
chosen for checking the most common culprits related to the presence of glitches, e.g., a
sudden excess of noise or exponential increment of a triggers population. When studying
the population of glitches, it is important to classify them in a set of finite labels. These
labels are based on the knowledge of already identified glitches and their names are based
on their physical origin or, when this is not known, on their morphology as visible from the
Q-transform application. A list of labels and images of different glitch typologies can be
found in the dataset of the Gravity Spy citizen science project [33]. Here, glitches with the
Koi Fish label, for example, are characterized by a head at the low frequencies of the Q-scan,
fins at around 30 Hz, and a thin tail at around 500 Hz [34]. Conversely, there is the Scattered
Light label, which describes one or multiple low-frequency and long-duration arcs. These
glitches are correlated with different mechanisms of light scattered into the interferometer’s
arms [34,35]. The Scattered Light glitch is one of the examples explored in Section 4.

Once the glitch metadata are obtained from the GlitchDB query, it is possible to then
download the selected glitches in CSV format (Search button) or switch to the graphical
tools provided by IPW and SGAW (Plot button), where the NICE proper tools for glitch
visualization and quick-look analysis are contained.

https://cron-job.org/en/
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3.1.3. Interactive Plot Window (IPW)

In the IPW, the user can explore the distribution of glitch properties in the detector
through a graphical interactive tool. In particular, there are three different plots by which it
is possible to customize display parameters, e.g., by zooming in on particular regions of the
plots or to choose which glitch parameters to plot. Thanks to the Bokeh 2.0.2 library [36], the
axes values can be chosen from all requested glitch properties (e.g., peak time, frequency,
and SNR), which are further selectable within the relative widgets.

The first plot is a 2D distribution (see Figure 3) and can be customized using the
widgets dedicated to channel and ETG selection. A third widget transforms the color and
the shape of the points according to the bar values, whose ticks can be chosen between
SNR values and glitch labels. The last two plots are 1D histograms containing the count
distribution synchronized with the 2D graph axes (see Figure 4).

Figure 3. Two different versions of IPW outputs, containing 1000 s of simulated glitches and showing
the requested metadata. The low-frequency glitches are due to scattered light. The high-frequency
glitches are modeled as a short sin-Gaussian time series. In the top figure, the color bar and the
markers’ radii represent the SNR values, which give a general idea of the detector noise status. In the
bottom figure, there are the same markers’ but with the y-axis changed by the user and the SNR bar
replaced with the class bar.
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These three plots can be saved and the figures can be managed with the graphical
toolbar below, which allows the user to zoom into the images and/or select a subset of data
for closer investigation.

Figure 4. 1D projection of the graph shown in Figure 3, located at the bottom of the IPW page. This
shows the time and frequency distribution of glitches not separated by classification. This can be
useful for estimating the count rate around an event.

3.1.4. Single Glitch Analysis Window (SGAW)

The SGAW contains functions that read and process data from strain and auxiliary
channels around the time of a glitch. That is carried out using gwdama 0.5.3 (GwDama
software documentation: https://gwnoisehunt.gitlab.io/gwdama/, accessed on 12 April
2024), a Python library specifically developed for GW data processing. Meanwhile, the
Q-transform used for the glitch morphology calculation is obtained through the algorithm
implemented in the gwpy 1.0.1 library [37].

As mentioned in Section 3.1, the SGAW tools are made accessible by clicking on each
glitch point in the IPW main plot. Data from LIGO–Virgo–KAGRA strain channels and
Virgo auxiliary channels are provided to several online processes at the Virgo site, where
data are stored for ∼6 months [2], and are used by SGAW for the analysis carried out
during the current observing run. Then, the data are transferred to computing centers for
offline analysis and, from this point forward, SGAW uses just the strain channels of the
Virgo detector located at the detector site for the offline analysis. Finally, NICE stores the
glitch metadata generated by Omicron during the run that has just finished.

SGAW shows a summary of the information available about a single glitch, e.g., the
name of the ETG that generated it and the corresponding description. It also contains an
explanation of how the glitch has been classified and provides the following four main
features for a deeper analysis of the event:

• Overview: shows the name and the description of the label used to classify the glitch;
• Coincident Channels: allows the origin of a glitch to be investigated and the listing of

all glitches whose peaks are time-coincident across the strain channel and the first-look
auxiliary channels, providing the name of the ETG that generated that trigger and the
details of the glitch given by the ETG itself. Here, the user can download a table with
the metadata and compute a Q-scan of the glitch in the strain and auxiliary channels
where coincident peaks of energy are present;

• Download: a download button, which allows the user to download 1 min of strain
data around the time of a glitch;

https://gwnoisehunt.gitlab.io/gwdama/
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• Visualization: as with the second section, data are read and transformed for morphol-
ogy visualization, which contains the necessary patterns for the classification (see
Figure 5 for the example carried out with simulated strain data). Additionally, the
time window around the trigger can be set to fit with the glitch duration. A toolbar
is present below that makes it possible to save the result, move the time–frequency
position, and zoom in on the glitch component.

Figure 5. GWScatteredLight (top) and GWSinGauss (bottom) Q-scans. The typical arcs of scattered-
light glitches are visible. The SGAW tool generates these images on-demand when data around a
GPS time are available.

3.2. The Tool’s Functionalities

The Search and Plot buttons open the interfaces that must be used for sending a
request to GlitchDB. These allow users to obtain glitch metadata in the desired format, e.g.,
the interactive plots provided by IPW. From the IPW, it is possible to access SGAW function-
alities with a simple double-click method, passing from a glitch population visualization
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to a single glitch characterization. This link between IPW and SGAW was developed to
facilitate the plotting and analysis of single glitches as well as glitch populations.

The IPW plots are particularly useful in obtaining the glitch rate around a GW candi-
date event (see Figures 3 and 4). For instance, the IPW can show how many glitches are
present around a time, their SNRs, and whether the glitches are classified and, if so, with
which label (see Figure 3). The additional possibility of changing the values associated with
the plot axis (e.g., the change from frequency to SNR on the y-axes of the plots in Figure 3)
and the possibility of investigating both past and current observing runs make this tool
ideal for understanding whether a glitch class distribution has already been observed (see
Section 5 for details).

The SGAW functionalities are dedicated to the quick-look characterization of the single
glitch. This can be done by comparing the list of coincident triggers from a set of auxiliary
channels that can be selected by the user and performing a Q-transform. This is useful when
searching for the possible cause of a glitch and looking at similar power excesses in the
strain and auxiliary channels. The possibility of downloading strain data around the glitch
time has been provided to permit dedicated offline investigations with user-made analysis
tools. The Q-transform performed on the strain data channel also helps scientists identify
glitches that have a particular time–frequency morphology but do not have a classification
label yet (see Figure 5). This makes the SGAW tool a good collector of ideas for the possible
classifications of these glitches. Making use of these web-based functionalities leads to
a fast and effective tool for managing information about the glitch rate, calculated as in
Figure 4. Note that NICE provides also the possibility of making a class query to GlitchDB,
thus showing the glitch rate of a particular family around the trigger of a GW candidate.
Is the glitch already classified with a particular label, thus rendering unlikely a potential
astrophysical origin? If it is so, the glitch morphology can be visualized for assessing a
first discrimination decision and then analyzed with a quantitative tool external to NICE
(see Section 5).

4. Description of the Tool’s Operation

An example of the distributions provided by NICE is shown in Figures 3 and 4. These
show a dataset of ∼1000 s of simulated glitches, uniformly distributed in time and injected
into simulated white noise. To show the capability of NICE to deal with glitches on different
time scales, we use here two classes of glitches, sin-Gaussian and Scattered Light. The
former are short-lived glitches, while the latter last for a few seconds and are associated
with scattered light in the mirrors of the detectors.

The GWSinGauss family of glitches is characterized by a sine wave modulated by a
Gaussian function, the amplitude of which h(t) is [38]:

h(t) = h0 sin[2π f0(t − t0)] exp
(
− (t − t0)

2

2τ2

)
(1)

where h0 is the strain amplitude, t0 and f0 are the central time and frequency of the glitch,
and τ is its characteristic duration.

The GWScatteredLight family represents a common low-frequency noise in a GW
detector and is due to the propagation of scattered light through the various sub-systems
of the detector [39]. These glitches appear as a series of arcs that can last up to ∼1 s and
their h(t) can be modeled using the formula [38]:

h(t) = h0 sin ϕ exp
(
− (t − t0)

2

2τ2

)
(2)

where ϕ is:
ϕ = 2π f0(t − t0)

[
1 − K(t − t0)

2
]

and K is a “curvature” parameter set to 0.5 to mimic a subset of arcs due to the scattered
light like the one shown in Figure 3 in [35].
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In Table 1, we show the parameter ranges used in simulating the glitches, the uniform
distribution in time of which is illustrated in Figure 3, using the results of IPW. Figure 4
shows the 1D histograms of glitch frequencies and GPS times that can be useful to determine
the presence of clusters of glitches with similar properties

Table 1. Parameter range of the simulated glitches used in NICE. τ is the characteristic duration and
f0 is the central frequency of the glitch.

Name GWSinGauss GWScatteredLight

SNR [4, 50] [4, 50]
τ (s) [0.0003, 0.09] [0.45, 0.7]

f0 (Hz) [50, 1500] [32, 64]

Figure 5 shows the SGAW output, obtained by calculating the Q-transform with the
gwpy library [37], highlighting two peculiarities. First, both glitch morphologies are differ-
ent from a chirp-like signal, which is typically produced by the merger of compact binary
objects [4,6]. Furthermore, the arc due to scattered light is visible and the sin-Gaussian
model fits with glitch symmetry around the center of the image. This morphological analy-
sis is useful when comparing similar signals between strain and auxiliary channels, as well
as when comparing glitches of the same family that present different peculiarities.

5. Impact on Detector Characterization

The impact of NICE on detector characterization activities arises from having a great
versatility of usage, together with a varied set of glitch information, and being fast and
easy to use. At the Virgo site, the online and offline detector characterization is done with
the following dedicated tools:

• VIM web tool, already described in Section 2, that shows, among other plots, the
Omicron glitch distribution during the last 24 h (more details in [25,26]);

• Used Percentage Veto (UPV) algorithm, which makes a statistical correlation between
transient events in the strain channel and some auxiliary channels [40];

• Omicron itself, which can also perform a time-coincident trigger search between the
strain channel and some auxiliary channels (Omicron documentation: https://virgo.
docs.ligo.org/virgoapp/Omicron/, accessed on 12 April 2024).

With the NICE interactive tools IPW and SGAW, it is possible to modify the search, the
analysis, and the plotting parameters according to the user’s purpose. It is also possible to
obtain already classified glitch labels, which adds an important characteristic to the glitch
distribution, if compared with the count rate and the loudness in a certain time interval,
also obtained using the VIM interface.

The possibility with NICE of carrying out a Q-scan comparison across different data
channels results in an efficient way of providing the auxiliary channels correlated with
the strain channel, which can be used for further quantitative analysis. For example, a
quick-look glitch correlation, obtained rapidly with SGAW functions, can be confirmed by
estimating the correlation factor between the channels individuated by SGAW. Then, the
correlation factor can be calculated by applying the UPV to the time interval around the
glitch, or even with the LIGO hierarchical veto algorithm [41], which provides a different
time correlation method concerning UPV.

NICE also proves to be very useful for inspecting long stretches of data (e.g., over one
day), integrating a dynamic plotting ability, and the archived classifications labels, with the
VIM information about glitches.

Since NICE keeps track of glitches detected in both past and current runs, its direct
overview of the distribution plots also allows for a comparison with similar events that
occurred in the past.

Different kinds of glitch families may evolve in different ways simply because of envi-
ronmental conditions, operational conditions of the detector, or improvement in tracking

https://virgo.docs.ligo.org/virgoapp/Omicron/
https://virgo.docs.ligo.org/virgoapp/Omicron/
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the relative motion between the mirrors [10,11,42]. It is, therefore, important to have a
tool that archives as much information as possible about glitches, whose metadata is well
documented and handy to plot, and that allows for easy switching between single- and
multiple-glitch investigation.

GlitchDB can host class labels produced by dedicated deep learning automatic classifi-
cation pipelines [33,34,38] and citizen science projects such as Gravity Spy (Gravity Spy—
Zooniverse: https://www.zooniverse.org/projects/zooniverse/gravity-spy, accessed on
12 April 2024) [33] and GWitchHunters (GWitchHunters Project: https://www.zooniverse.
org/projects/reinforce/gwitchhunters, accessed on 12 April 2024) [43]. Many machine
learning algorithms collect glitch metadata, see [44] for an exhaustive summary, using just
the strain channel or adopting also data from the main auxiliary channels. These pipelines
do not include a citizen science classification stage, as opposed to the Gravity Spy and
GWitchHunters projects. Thanks to citizen science, we have a high number of samples for
the glitch classification done using supervised learning algorithms, providing such labels
during the detector characterization activities. In particular, the GWitchHunters project is
currently collecting class labels from Virgo glitches affecting data during past runs. The aim
is to create the dataset necessary for training deep learning classification pipelines, whose
results will be collected and visualized by NICE, together with the training dataset [43].

A key aspect of NICE is its modularity. Its back-end MySQL database service allows
for particular flexibility. It uses a database schema that allows for the integration of other
kinds of noise sources that are present in the detectors, e.g., spectral lines [45]. It would be
interesting to explore the versatility of graphical interaction by adding metadata about the
wandering spectral lines that, in turn, contribute to the creation of false GW signals [34].

6. Threats to Validity

The NICE workflow is tested using real Omicron metadata from the O2 and O3
runs, previously archived in offline servers, and simulated noise data generated with two
canonical glitch models. Based on these tests, we can identify some threats to the validity
of this tool. Since it is not tested on real strain and auxiliary data, plots generated with
SGAW may not be obtained in a reasonable latency for analysis purposes. Furthermore,
some auxiliary channels may be inaccessible around the time of an Omicron glitch, and
this possibility must be considered in the future development of NICE. With the hope of
being able to carry out some tests during a run in progress, it is desirable to carry out
the following:

• Compare plots obtained from VIM and NICE and check if Omicron glitch distribution
plots are equal for those metadata updated every 24 h in the GlitchDB;

• Measure the speed with which plots are obtained from SGAW when having access to
real data;

• Ensure there is a machine learning pipeline capable of providing glitch labels and
uploading them to the database in a few seconds, to be able to use NICE also for the
low-latency analysis of the detector status.

In the way that it was conceived, developed, and tested, NICE is designed to provide
a quick-look analysis and must be considered as only a starting point for GW noise hunting,
the results of which must be subsequently proved quantitatively with the tools mentioned
in Section 5.

7. Conclusions

NICE is an interactive web-based service devoted to noise investigation in GW inter-
ferometers. During the commissioning period between the O3 and O4 runs, the software
was tested on Advanced Virgo data and prepared for interfacing with Advanced LIGO
and KAGRA data. We have shown that the approach proposed by NICE can be useful
for detector characterization and GW event validation, and it can achieve this by utilizing
different interactive quick-look analysis tools. Tools developed for monitoring the glitching
status of the detector, e.g., VIM, already provide glitch distributions and single glitch

https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/reinforce/gwitchhunters
https://www.zooniverse.org/projects/reinforce/gwitchhunters
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morphology plots through static graphics, generated every day of a run. Differently from
such related monitoring tools, NICE is intended for specific glitch analysis and introduces
user interactivity and glitch class labels into a web-based GW system designed to monitor
the glitching status of the detector. This software is ready for use during future observing
runs, where GW events are expected to be more frequent than before. Future improvements
to the NICE infrastructure include the use, during strain data collection, of low-latency
glitch metadata and the use of other ETGs in addition to Omicron. Other classification
labels will be integrated by NICE from the citizen science campaign carried out by the
GWitchHunters project. NICE interactivity with glitch visualization will allow an easy
investigation of the origin of these transient noise sources, thus mitigating the impact that
glitches have on the detection of astrophysical signals.
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