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Abstract: We build and study dynamic versions of epistemic logic. We study languages parame-
terized by an action signature that allows one to express epistemic actions such as (truthful) public
announcements, completely private announcements to groups of agents, and more. The language
L(Σ) is modeled on dynamic logic. Its sentence-building operations include modalities for the
execution of programs, and for knowledge and common knowledge. Its program-building operations
include action execution, composition, repetition, and choice. We consider two fragments of L(Σ).
In L1(Σ), we drop action repetition; in L0(Σ), we also drop common knowledge. We present the
syntax and semantics of these languages and sound proof systems for the validities in them. We
prove the strong completeness of a logical system for L0(Σ) and the weak completeness of one for
L1(Σ). We show the finite model property and, hence, decidability of L1(Σ). We translate L1(Σ) into
PDL, obtaining a second proof of decidability. We prove results on expressive power, comparing
L1(Σ) with modal logic together with transitive closure operators. We prove that a logical language
with operators for private announcements is more expressive than one for public announcements.

Keywords: dynamic epistemic logic; update; public announcement; common knowledge; completeness;
expressive power

1. Introduction

One of the goals of dynamic epistemic logic is to construct logical languages which
allow one to represent a variety of possible types of changes affecting the information
states of agents in a multi-agent setting. One wants (formal) logical systems with primitive
operations corresponding to (informal) notions such as public announcement, completely
private announcement, and private announcement to one agent with suspicion by another, etc.
And then, after the logics are formulated, one would ideally want technical tools to use in
their study and application.

The full formulation of such logics is somewhat of a complicated story. In the first
place, one needs a reasonable syntax. On the semantic side, there is an unusual feature in
that the truth of a sentence at a point in one model often depends on the truth of a related
sentence in a different model. In effect, the kinds of actions we are interested in give rise to
functions, or relations more generally, on the class of all possible models.

There have been some proposals on logical systems for dynamic epistemic logic
beginning with the work of Plaza [1], Gerbrandy [2,3], and Gerbrandy and Groeneveld [4].
These papers formulated logical systems for the informal notions of public announcement
and completely private announcement. They left open the matter of axiomatizing the
logics in the presence of common-knowledge operators. (Without the common-knowledge
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operators, the systems are seen to be variants on standard multi-model logic.) And they
also left open the question of the decidability of these systems. Our work began with
complete axiomatizations for these systems and for more general systems. Our results were
presented in [5]. As it happens, the logics which we constructed in [5] did not have the
friendliest syntax. The first two authors pursued this matter for some time and eventually
came to the proposals in [6]. The logical systems for the validities of the ultimate languages
are certainly related to those in [5]. But due to the different formulation of the overall
syntax and semantics, all of the work on soundness and completeness had to be completely
reworked. The main purpose of the present paper is to present these results. Secondarily,
we present some technical results on the systems such as results on expressive power.

1.1. Contents of This Paper: A High-Level View

This paper is a long technical development, and for this reason we did not include a
full-scale motivation of the logical systems themselves. For a great deal of the motivational
material, one should see [5]. Section 2 formulates all of the definitions needed in the paper.
The presentation is based closely on the work in [6], so readers familiar with that paper
may use Section 2 as a review. Other readers of this paper could take the logical systems
here to simply be extensions of propositional dynamic logic which allow one to make
“transitions from model to model” in addition to transitions “inside a given model”. In
addition, Section 2.8 is new in this paper.

The logical languages studied in this paper are presented in Section 3. Section 3.2
presents some examples of the semantics, chosen to foreshadow work in Section 6 on
expressive power. The logical system is presented in Section 4, along with a soundness
result for most of the system. The completeness theorem for the logic comes in Section 5.
The final section deals with questions of expressive power, and it may be read after Section 4.

Two aspects of our overall machinery are worth pointing out. The first is the use of
the canonical action model. This is a semantic object built from syntactic objects (sequences
of simple actions, terms in our language L(Σ)). We would like to think that the use of the
canonical model makes for a more elegant presentation than one would otherwise have.

The second feature is a term rewriting system for dealing with assertions in the language.
The semantic equivalences in dynamic epistemic logic are sufficiently complicated that the
‘subsentence’ relation is not the most natural or useful one for many purposes. Instead, one
needs to handcraft various ordering relations for use in inductive proofs, or in defining
translations. For just one example, in the logic of public announcements one has an
announcement–knowledge axiom in a form such as

[!ϕ]2ψ↔ (ϕ→ 2[!ϕ]ψ). (1)

(Here, the notation [!ϕ]ψ can be read: if ϕ is true, then after announcing it publicly, ψ is
true.) This is for a logic with just one agent, and in this discussion we are forgetting about
common knowledge. To prove that the logic has a translation t back to ordinary modal
logic, one wants to use the equivalence in (1), above, as the key step in the translation,
defining ([ϕ]2ψ)t to be ϕt → (2[!ϕ]ψ)t. But then one needs to have some reason to say
that both ϕ and (more critically) 2[!ϕ]ψ are of lower complexity than the original formula
[ϕ]2ψ. There are several ways to make this precise. One is to directly assign an element
of some well-founded set to each formula and then use this as a measure of complexity.
This is carried out in [7], and the well-founded set is the natural numbers. Our treatment is
different, mainly because it goes via term rewriting. In effect, one takes the well-founded
set to be the sentences themselves, with the order given by substitution using laws such
as (1), but oriented in a specified direction (left to right, for example). Then the fact that
we have a well-founded relation is a result one proves about oriented sets of laws (term
rewriting systems). In our case, we use an interpretation constructed by hand.

Our term rewriting system is presented and studied in Section 5.2. It actually deals
not with L(Σ) but with a different language called L1(Σ). An important by-product of
our completeness proof via rewriting is a Normal Form Theorem for L1(Σ). This is an
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interesting result in itself, and it does not follow from other completeness proofs such as
those in [7]. In order to use the rewriting system, one needs to know that substitution
of “equivalent” objects preserves “equivalence” and that the proof system itself is strong
enough to reduce sentences to normal form. Unfortunately, this “obvious” point takes a
great deal of work. The details are all in this paper, and to our knowledge no other source
presents complete proofs on these matters.

1.2. Comparison with Some Other Work

The first version of this paper is our 1998 conference publication [5]. We ourselves had
several versions of this paper issued as technical reports or posted on web sites, and so
in some sense the results here are public but not published. Since its inception, the subject
of dynamic epistemic logic has taken off in a serious way. It sees dozens of papers a year.
But it seems fair to say that the overall topics of investigation are not the logical systems
presented in any of the original papers but rather are adaptations of the logics to settings
involving probability, belief revision, quantum information, and the like. Still, the work
reported here has been the subject of several existing publications. And so it makes sense
for us to make the case that the results in this paper are still relevant and do not follow
from previously published results.

Our 2016 paper [8] is also a follow-up version of [5]. But in [8], we did not have the
space to include all of the material in this paper, and so the particular logic in that paper
was a fragment of the one here, with a simpler technical treatment. In addition, the first
part of [8] is from [6] and goes beyond what we do here.

The book Dynamic Epistemic Logic by Hans van Ditmarsch, Wiebe van der Hoek, and
Barteld Kooi [7] is a textbook presentation containing some of the content of this paper
and [6], with additional material on model checking, belief revision, and other topics.
Section 6.4 presents the syntax of what it calls action model logic and writes as Lact

KC⊗(A, P).
At first glance, the syntax of Lact

KC⊗(A, P) seems fairly close to the language L(Σ) presented
in [6] and reviewed in Section 3 of this paper. A relatively small difference concerns the
action models in Lact

KC⊗(A, P). (In general, action models are like Kripke models together
with a “precondition” function mapping worlds to sentences.) These are required to have
the property that each agent’s accessibility relation is an equivalence relation; our treatment
is more general and, hence, can present logics for epistemic actions such as “cheating” in
games. But the main difference is that our language L(Σ) uses what everyone would take
to be a bona-fide syntax: sentences and program expressions are linearly ordered strings of
symbols. In contrast, the syntax of Lact

KC⊗(A, P) employs action models directly. Structured
but unordered objects occur inside of sentences. In a different context, it would be like
studying formal language and their connection to automata by studying something that
was like a regular expression but allowed finite automata to directly occur inside some
syntactic object.

We have no objection ourselves to this move. In fact, this was the presentation we
chose in our first version [5] of this paper. But over the years we have found quite a lot of
resistance to this presentation on the grounds that one is “mixing syntax and semantics”.
Again, we do not assert this objection, but we address it by employing the large technical
machinery that we see in [6] and also Sections 2 and 3. (We are keenly aware of the irony
of our being criticized for “mixing syntax and semantics” in [5], and after we “un-mixed”
them in [6], we find others making the same natural move.)

We would also like to mention the paper “Logics of Communication and Change”, van
Benthem, van Eijck and Kooi [9]. This paper presents completeness theorem for a logical
system in the same family as ours. But as it happens, the paper studies a different system.
To see the differences, it is worthwhile to note that the source of much of the work in this
area concerns assertions of common knowledge following an action of some sort. In our
setting, these would be written [α]2∗ϕ. It turns out that there is no equivalence of the form
(1) for assertions such as this. This leads us to our action rule, an inference rule allowing
the derivation of sentences of the kind under discussion. The idea in [9] is to start with
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a more expressive ’static’ language (than just epistemic logic with common knowledge),
namely, an ‘epistemic’ version of propositional dynamic logic, called E-PDL in the paper (‘E’
for ‘epistemic’). Then one adds ‘action’ modalities corresponding to update models [U, e];
this modality would be like our [α], but in [9] as in [5] and [7], this U is an action model
rather than a bona-fide syntactic object. One can then prove that the action modalities can
be translated away into the static base, via reduction axioms. This very interesting and
suggestive result is not available in our more restrictive setting, but that seems to be the
price for sticking with a language that has a very clear epistemic interpretation. In fact, it is
not known whether E-PDL is actually stronger than the logical systems in this paper 1, and
if it is then it is not clear what is the epistemic use of this additional expressive power 2.

Finally, we would like to mention several articles quite related to our topic which
appear in online sources or in handbooks: [10–12]. These sources should be useful to
anyone wishing to obtain a wider perspective on the ideas in this paper or a slightly
different presentation of them.

2. Definitions

This section provides all of our definitions. It is short on motivation, and we have
situated the examples in Section 3.2, following all the definitions. See also Sections 1 and 2
of [6] for the motivation from epistemic logic and for a more leisurely presentation.

2.1. State Models and Propositions

We fix a set AtSen of atomic sentences and also a set A of agents. All of our definitions
are relative to these sets.

A state model is a triple S = (S,→A S, ‖ · ‖S) consisting of a non-empty set S of “states”;
a family →A S of binary accessibility relations →A S ⊆ S× S, one for each agent A ∈ A; and a
“valuation” (or a “truth” map) ‖.‖S : AtSen→ P(S), assigning to each atomic sentence p a
set ‖p‖S of states. These are exactly Kripke models generalized by having one accessibility
relation for each agent. We use the terminology of state models because there are other
kinds of models, action models and program models, in our study. When dealing with a single
fixed-state model S, we often drop the subscript S from all the notation.

Definition 2.1. Let SMod be the collection of all state models. An epistemic proposition is an
operation ϕ defined on SMod such that for all S ∈ SMod, ϕS ⊆ S.

The collection of epistemic propositions is closed in various ways.

1. For each atomic sentence p we have an atomic proposition p with pS = ‖p‖S.
2. If ϕ is an epistemic proposition, then so is ¬ϕ, where (¬ϕ)S = S \ϕS.
3. If C is a set or class of epistemic propositions, then

∧
C is an epistemic proposition,

where
(
∧

C)S =
⋂
{ϕS : ϕ ∈ C}.

4. Taking C, above, to be empty, we have a “universally true” epistemic proposition tr,
with trS = S.

5. We also may take C in part 3 to be a two-element set {ϕ, ψ}; here, we write ϕ∧ ψ
instead of

∧{ϕ, ψ}. We see that if ϕ and ψ are epistemic propositions, then so is ϕ∧ψ,
with (ϕ∧ψ)S = ϕS ∩ψS.

6. If ϕ is an epistemic proposition and A ∈ A, then 2Aϕ is an epistemic proposition,
with

(2Aϕ)S = {s ∈ S : if s→A t, then t ∈ ϕS}. (2)

7. If ϕ is an epistemic proposition and B ⊆ A, then 2∗Bϕ is an epistemic proposition,
with

(2∗Bϕ)S = {s ∈ S : if s−→B∗ t, then t ∈ ϕS}.
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Here s−→B∗ t iff there is a sequence

s = u0
A1→ u1

A2→ · · · An→ un+1 = t

where A1, . . . , An ∈ B. In other words, there is a sequence of arrows labelled with
agents from the set B taking s to t. We allow n = 0 here, so −→B∗ includes the identity
relation on S.

Syntactic and Semantic Notions

It will be important for us to make a sharp distinction between syntactic and semantic
notions. We have already begun to do this, speaking of atomic sentences and atomic
propositions. The difference for us is that atomic sentences are entirely syntactic objects: we
will not treat an atomic sentence p as anything except an unanalyzed mathematical object.
On the other hand, this atomic sentence p also has associated with it the atomic proposition
p. As defined in point 1, p will be a function whose domain is the (proper class of) state
models, and it is defined by

pS = {s ∈ S : s ∈ ‖p‖S}. (3)

This difference may seem pedantic at first, and surely there are times when it is sensible to
blur it. But for various reasons that will hopefully become clear, we need to insist on it.

Up until now, the only syntactic objects have been the atomic sentences p ∈ AtSen. But
we can build the collections of finitary and infinitary sentences by the same definitions that
we have seen, and then the work of the past section is the semantics of our logical languages.
For example, we have sentences p ∧ q, 2A¬p, and 2∗Bq. These then have corresponding
epistemic propositions as their semantics: p ∧ q, 2A¬p, and 2∗Bq, respectively. Note that
the latter is a properly infinitary proposition (and so 2∗Bq is a properly infinitary sentence);
it abbreviates the infinite conjunction

p ∧2B p ∧2B2B p ∧ · · ·

2.2. Updates

A transition relation between state models S and T is a relation between the sets S and
T; i.e., a subset of S× T. An update r is a pair of operations

r = (S 7→ S(r), S 7→ rS),

the first takes each S ∈ SMod to a state model S(r), and the second takes each S ∈ SMod
to a relation rS between S and S(r). For the second map, we write rS : S→ S(r). We call
S 7→ S(r) the update map, and S 7→ rS the update relation.

We continue our general discussion by noting that the collection of updates is closed
in various ways.

1. Skip and Crash: there exist updates called “Skip”, denoted by 1, and “Crash”, denoted
by 0. Both keep the original state model unchanged S(1) = S(0) = S, but they differ
in the fact that 1S is the identity relation on S, while 0S is the empty relation.

2. Sequential composition: if r and s are epistemic updates, then their composition r; s is
again an epistemic update, where S(r; s) = S(r)(s), and (r; s)S = rS; sS(r). Here, we

use on the right side the usual composition ; of relations 3.
3. Union (or non-deterministic choice): If X is any non-empty set of epistemic updates,

then the union
⊔

X is an epistemic update, defined as follows. For each S, the set of
states of the model S(

⊔
X) is the disjoint union of all the sets of states in each model

S(r) for r ∈ X:
{(s, r) : r ∈ X and s ∈ S(r)}.
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Similarly, each accessibility relation →A is defined as the disjoint union of the corre-
sponding accessibility relations in each model:

(t, r)→A (u, s) iff if r = s and t→A u in S(r).

The valuation ‖p‖S(
⊔

X) in S(
⊔

X) is the disjoint union of the valuations in each state
model:

‖p‖S(
⊔

X) = {(s, r) : r ∈ X and s ∈ ‖p‖S(r)}.

Finally, the update relation (
⊔

X)S between S and S(
⊔

X) is the union of all the
update relations rS:

t (
⊔

X)S (u, r) iff t rS u.

For the empty set of updates X = ∅, we conventionally put
⊔

∅ := 0 to be the
above-defined “crash” update.

4. Special case: binary union. The (disjoint) union of two epistemic updates r and s is an
update rt s, given by rt s =

⊔{r, s}.
5. Another special case: Kleene star (iteration). We have the operation of Kleene star on

updates:
r∗ =

⊔
{1, r, r · r, . . . , rn, . . .}

where rn is recursively defined by r0 = 1, rn+1 = rn; r.

The operations r; s, rt s and r∗ are the natural analogues of the operations of union of
relations, relational composition and iteration, and of the regular operations on programs
in PDL. The intended meanings are: for r; s, sequential composition (do r, then do s); for
rt s, non-deterministic choice (do either r or s); for r∗, iteration (repeat r some finite number of
times).

2.2.1. Standard Updates

An update a is standard if for all state models S, (aS)
−1 is a partial function. (The

relation (aS)
−1 is the inverse of the update relation; it is a subset of S(a)× S.)

Proposition 2.2. The update 1 is standard. The composition of standard updates is standard, as is
any union of standard updates.

2.2.2. Updates Determine Dynamic Modalities

If ϕ is an epistemic proposition and r an update, then [r]ϕ is an epistemic proposition
defined by

([r]ϕ)S = {s ∈ S : for all t such that s rS t, t ∈ ϕS(r)}. (4)

We should compare (4) and (2). The point is that we may treat updates in a similar manner
to other box-like modalities; the structure given by an update allows us to do this.

We also define the dual proposition 〈r〉ϕ by

(〈r〉ϕ)S = {s ∈ S : for some t such that s rS t, t ∈ ϕS(r)}.

2.3. Action Models and Program Models

Let Φ be the collection of all epistemic propositions. An (epistemic) action model is a
triple Σ = (Σ,→A , pre), where Σ is a non-empty set of simple actions,→A is an A-indexed
family of binary relations on Σ, and pre : Σ→ Φ.

To model non-deterministic actions and non-simple actions (whose appearances to
agents are not uniform on states), we define epistemic program models. In effect, this means
that we decompose complex actions (‘programs’) into “simple” ones: they correspond to
sets of simple, deterministic actions from a given action model.

A program model is defined as a pair π = (Σ, Γ) consisting of an action model Σ and a
set Γ ⊆ Σ of distinguished simple actions. Each of the simple actions γ ∈ Γ may be thought of
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as a possible “deterministic resolution” of the non-deterministic action π. As announced
above, the intuition about the map called pre is that an action is executable in a given state
only if all its preconditions hold at that state. We often spell out an epistemic program
model as (Σ,→A , pre, Γ) rather than ((Σ,→A , pre), Γ). Also, we usually drop the word
“epistemic” and just refer to these as program models.

2.4. The Update Product

Given a state model S = (S,→A S, ‖ · ‖S) and an action model Σ = (Σ,→A , pre), we
define their update product to be the state model

S⊗ Σ = (S⊗ Σ,→A , ‖.‖S⊗Σ),

given by the following: the new states are pairs of old states s and simple actions σ which
are “consistent”, in the sense that all preconditions of the action σ “hold” at the state s

S⊗ Σ = {(s, σ) ∈ S× Σ : s ∈ pre(σ)S}. (5)

The new accessibility relations are taken to be the “products” of the corresponding accessi-
bility relations in the two frames; i.e., for (s, σ), (s′, σ′) ∈ S⊗ Σ we put

(s, σ)→A (s′, σ′) iff s→A s′ and σ→A σ′, (6)

and the new valuation map ‖.‖S⊗Σ : AtSen → P(S⊗ Σ) is essentially given by the old
valuation:

‖p‖S⊗Σ = {(s, σ) ∈ S⊗ Σ : s ∈ ‖p‖S}. (7)

2.5. Updates Induced by Program Models

Recall that we defined updates in Section 2.2. And above, in Section 2.3, we defined
epistemic program models. Note that there is a big difference: the updates are pairs of
operations on the class of all state models, and the program models are typically finite
structures. We think of program models as capturing specific mechanisms, or algorithms, for
inducing updates. This connection is made precise in the following definition.

Definition 2.3. Let (Σ, Γ) be a program model. We define an update which we also denote
(Σ, Γ) as follows:

1. S(Σ, Γ) = S⊗ Σ.
2. s (Σ, Γ)S (t, σ) if s = t and σ ∈ Γ.

We call this the update induced by (Σ, Γ).

Note that updates of the form (Σ, Γ) have the property that for all state models S,
the inverse of the update relation (Σ, Γ)S is a partial function. That is, these updates are
standard.

2.6. Operations on Program Models
2.6.1. 1 and 0

We define program models 1 and 0 as follows: for both of them we take our underlying
action model to be given by any one-action set {σ} with σ→A σ for all A, PRE(σ) = tr; the
only difference is that for 1 we take the distinguished set Γ1 = {σ}, while for 0 we put
Γ0 = ∅. The point here is that the update induced by the program model for 1 is equivalent
to the update 1 from Section 2.2, and, similarly, the update induced by the program model
for 0 is what we called 0 in Section 2.2. That explains why we purposely use the same
notation for these program models as for the corresponding updates.
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2.6.2. Sequential Composition

In all settings involving “actions” in some sense or other, sequential composition is
a natural operation. In our setting, we would like to define a composition operation on
program models, corresponding to the sequential composition of updates. Here is the
relevant definition.

Let Σ = (Σ,→A , preΣ, ΓΣ) and ∆ = (∆,→A , pre∆, Γ∆) be program models. We define
the composition

Σ; ∆ = (Σ× ∆,→A , preΣ;∆, ΓΣ;∆)

to be the following program model:

1. Σ× ∆ is the cartesian product of the sets Σ and ∆.
2. →A in the composition Σ; ∆ is the family of product relations, in the natural way:

(σ, δ)→A (σ′, δ′) iff σ→A σ′ and δ→A δ′.

3. preΣ;∆(σ, δ) = 〈(Σ, σ)〉pre∆(δ).
4. ΓΣ;∆ = ΓΣ × Γ∆.

In the definition of pre, (Σ, σ) is an abbreviation for the induced update (Σ, {σ}), as defined
in Section 2.5.

2.6.3. Unions

If Σ = (Σ,→A , preΣ, ΓΣ) and ∆ = (∆,→A , pre∆, Γ∆), we take Σ t ∆ to be the disjoint
union of the models, with the union of the distinguished actions. The intended meaning
is the non-deterministic choice between the programs represented by Σ and ∆. Here is
the definition in more detail, generalized to arbitrary (possibly infinite) disjoint unions:
let {Σi}i∈I be a family of program models, with Σi = (Σi,→A i, prei, Γi); we define their
(disjoint) union ⊔

i∈I
Σi =

(⊔
i∈I

Σi,→A i, prei, Γi

)
to be the model given by:

1.
⊔

i∈I Σi is
⋃

i∈I(Σi × {i}), the disjoint union of the sets Σi.
2. (σ, i)→A (τ, j) if i = j and σ→A iτ.
3. pre(σ, i) = prei(σ).
4. Γ =

⋃
i∈I(Γi × {i}).

2.6.4. Iteration

Finally, we define an iteration operation by Σ∗ =
⊔{Σn : n ∈ N}. Here, Σ0 = 1 and

Σn+1 = Σn; Σ.

Our definition of the operations on program models are faithful to the corresponding
operations on updates from Section 2.2.

Proposition 2.4 ([6]). The update induced by a composition of program models is isomorphic to
the composition of the induced updates. Similarly, for sums and iteration, mutatis mutandis.

Since we shall not use this result, we omit the proof.

2.7. Action Signatures

Definition 2.5. An action signature is a structure

Σ = (Σ,→A , (σ1, σ2, . . . , σn))

where Σ = (Σ,→A ) is a finite Kripke frame, and σ1, σ2, . . . , σn is an enumeration of Σ in a
list without repetitions. We call the elements of Σ action types. When we deal with an action
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signature, our notation for the action types usually includes a subscript (even though this
is occasionally redundant); thus, the action types come with a number that indicates their
position in the fixed enumeration of the action signature.

An action signature Σ together with an assignment of epistemic propositions to the
action types in Σ gives us a full-fledged action model. And this is the exact sense in
which an action signature is an abstraction of the notion of action model. We shall use action
signatures in constructing logical languages.

Example 2.6. Here is a very simple action signature which we call Σskip. Σ is a singleton {skip},
pre(skip) = tr, and skip→A skip for all agents A. In a sense, which we shall make clear later,
this is an action in which “nothing happens”, and, moreover, it is common knowledge that this is
the case.

The next simplest action signature is the “test” signature Σ?. We take Σ? = {?, skip}, with
the enumeration ?, skip. We also take ?→A skip, and skip→A skip for all A. This turns out to be
a totally opaque form of test: ϕ is tested on the real world, but nobody knows this is happening.
Its function will be to generate tests ?ϕ, which affect the states precisely in the way dynamic logic
tests do.

For each set B ⊆ A of agents, we define the action signature PriB of completely private
announcements to the group B. It has Σ = {PriB , skip}; PriB→B PriB for all B ∈ B, PriB→C skip
for C 6∈ B, and skip→A skip for all agents A.

The action signature Pri of all completely private announcements (to arbitrary subgroups)
can be thought of as the disjoint union of all the action signatures PriB with B ⊆ A. However, we
can avoid some redundancy by identifying all the skip actions regardless of which signature PriB

they come from: in other words, we set Σ = {PriB : B ⊆ A} ∪ {skip}, with PriB→B PriB for all
B ∈ B ⊆ A, PriB→C skip for C 6∈ B ⊆ A, and skip→A skip for all agents A.

Next, we consider the action signature PrssBk of private announcements to the group B with
secure suspicion of k possible announcements by the outsiders. It has the following components:
Σ = {1, 2, . . . , k} ∪ {1′, 2′, . . . , k′} ∪ {skip} (we assume these sets to be disjoint); i→B i′ for all
B ∈ B and all i ≤ k; i→C j for all i, j ≤ k and C 6∈ B; i′→B i′ for i ≤ k and B ∈ B; i′→C skip for all
i ≤ k and C 6∈ B; and, finally, skip→A skip for all agents A.

The action signature CkaBk is given by: Σ = {1, . . . , k}; i→B i for i ≤ k and B ∈ B; and,
finally, i→C j for i, j ≤ k and C 6∈ B. This action signature is called the signature of common
knowledge of alternatives for an announcement to the group B.

2.7.1. Signature-Based Program Models

Let Σ be an action signature, let n be the number of action types in Σ, let Γ ⊆ Σ, and
let ~ψ = ψ1, . . . , ψn be a list of epistemic propositions. We obtain a program model (Σ, Γ,~ψ)
in the following way:

1. The set of simple actions is Σ, and the accessibility relations are those given by the
action signature.

2. For j = 1, . . . , n, pre(σj) = ψj.
3. The set of distinguished actions is Γ.

In the special case that Γ is the singleton set {σi}, we write the resulting signature-
based program model as (Σ, σi,~ψ).

Finally, recall from Section 2.5 that every signature-based program model induces an
update.

To summarize: every action signature, set of distinguished action types in it, and tuple of
epistemic propositions gives a program model in a canonical way. Every program model induces a
standard update.

As examples, note that both our program model 1 for “Skip” and our program model 0
for “Crash” (as defined above) are signature-based: indeed, the signature is Σskip as defined
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above (having only one action type skip, with loops for all agents and true precondition),
while the designated sets of actions are Γ1 = {skip} and, respectively, Γ0 = ∅.

2.8. Bisimulation-Based Notions of Equivalence

In this section, we discuss natural notions of equivalence for some of the definitions
which we have already seen. We begin by recalling the most important notion of equiva-
lence for state models, bisimulation.

Definition 2.7. Let S and T be state models. A bisimulation between S and T is a relation
R ⊆ S× T such that whenever s R t, the following three properties hold:

1. s ∈ ‖p‖S if t ∈ ‖p‖T for all atomic sentences p.
2. For A ∈ A and s′ such that s→A s′, there is some t′ such that t→A t′ and s′ R t′.
3. For A ∈ A and t′ such that t→A t′, there is some s′ such that s→A s′ and s′ R t′.

R is a total bisimulation if it is a bisimulation and, in addition: for all s ∈ S there is some
t ∈ T such that s R t, and vice-versa.

Proposition 2.8. If there is a bisimulation R such that s R t, then s and t agree on all sentences ϕ
in infinitary modal logic: s ∈ [[ϕ]]S if t ∈ [[ϕ]]T.

Recall that SMod is the class of all state models. We have spoken of states as the
elements of state models, but we also use the term states to refer to the pointed-model pairs
(S, s), with S ∈ SMod and s ∈ S. The class of all states is itself a state model, except that
its collection of states is a proper class rather than a set. Still, it makes sense to talk about
bisimulation relations on the class of all states. The largest such is given by

(S, s) ≡ (T, t) iff there is a bisimulation R between S and T such that s R t.

This relation ≡ is indeed an equivalence relation on ‘states’ (pointed models), called the
bisimilarity relation. When S and T are clear from the context, we write s ≡ t instead of
(S, s) ≡ (T, t).

2.8.1. Equivalence and Preservation by Bisimulation

Since we are discussing notions of equivalence here, it makes sense to also think
about epistemic propositions. Two propositions ϕ and ψ are equal if they are the same
operation on SMod. That is, for all S, ϕS = ψS. Later, we shall introduce syntactically
defined languages and also proof systems to go with them; in due course we shall see other
interesting notions of equivalence.

Moving towards a connection of propositions with bisimulation, we say that a propo-
sition ϕ is preserved by bisimulations if whenever (S, s) ≡ (T, t), then s ∈ ϕS iff t ∈ ϕT.

Proposition 2.9 ([6]). The propositions which are preserved by bisimulation include tr and the
atomic propositions p, and they are closed under all of the (infinitary) operations on propositions
from Section 2.1.

2.8.2. Equivalence of Bisimulation-Preserving Updates

From now we will focus on a special class of well-behaved updates: the ones that
preserve bisimulation.

Definition 2.10. An update r preserves bisimulations if the following two conditions hold:

1. If s rS s′ and (S, s) ≡ (T, t), then there is some t′ such that t rT t′ and (S(r), s′) ≡
(T(r), t′).

2. If t rT t′ and (S, s) ≡ (T, t), then there is some s′ such that s rS s′ and (S(r), s′) ≡
(T(r), t′).
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An action model Σ preserves bisimulations if the epistemic proposition pre(σ) is pre-
served under bisimulations for all σ ∈ Σ.

It is easy to see that the updates 1 and 0 are bisimulation-preserving, and, similarly,
that the action models for the programs 1 and 0 preserve bisimulation. More examples can
be produced using the following two results.

Proposition 2.11 ([6]). Concerning bisimulation preservation:

1. The bisimulation-preserving updates are closed under composition and (infinitary) unions.
2. If ϕ is preserved by bisimulations and r preserves bisimulations, then [r]ϕ is preserved by

bisimulations.

Proposition 2.12 ([6]). Let Σ be a bisimulation-preserving action model. Let Γ ⊆ Σ be arbitrary.
Then, the update induced by (Σ, Γ) preserves bisimulation.

We can now define an appropriate notion of equivalence between bisimulation-
preserving updates.

Definition 2.13. Two bisimulation-preserving updates a and b are equivalent if the follow-
ing two conditions hold:

1. If s aS s′ then there is some s′′ such that s bS s′′ and (S(a), s′) ≡ (S(b), s′′).
2. If s bS s′′, then there is some s′ such that s aS s′ and (S(a), s′) ≡ (S(b), s′′).

We write a ∼= b for the update-equivalence relation.

Proposition 2.14. Update equivalence ∼= is an equivalence relation on the class of bisimulation-
preserving updates.

Proof. For reflexivity, let a be a bisimulation-preserving update. We can check that a ∼= a
by applying the definition of bisimulation preservation to r := a and to models S = T and
states s = t. Symmetry follows immediately from the definition of ∼= together with the
symmetry of the bisimilarity relation ≡. For transitivity, assume that a ∼= b and b ∼= c. To
show that a ∼= c, we check only condition 1 (since the proof of condition 2 is similar). For
this, suppose that we have s aS s′. Since a ∼= b, there must exist some s′′ such that s bS s′′

and (S(a), s′) ≡ (S(b), s′′). The first of these, together with the fact that b ∼= c, implies that
there must exist some s′′′ such that s bS s′′′ and (S(b), s′′) ≡ (S(c), s′′′). By the transitivity
of the bisimilarity relation, we also have (S(a), s′) ≡ (S(c), s′′′), as desired.

Proposition 2.15. Let S and T be models and let s, t be states. Assume that (S, s) ≡ (T, t). Let a
and b be bisimulation-preserving updates such that a ∼= b. Then we have the following:

1. If s aS s′, then there is some t′ such that t bT t′ and (S(a), s′) ≡ (T(b), t′).
2. If t bT t′, then there is some s′ such that s aS s′ and (S(a), s′) ≡ (T(b), t′).

Proof. The second clause follows from the first, using the fact that the relations of update
equivalence and bisimilarity are symmetric. So it is enough to check the first clause. From
s aS s′, (S, s) ≡ (T, t) and the fact that a preserves bisimulation, it follows that there exists
some t′′ such that t aTt′′ and (S(a), s′) ≡ (T(a), t′′). From t aTt′′ and a ∼= b, it follows that
there exists some t′ such that t bT t′ and (T(a), t′′) ≡ (T(b), t′). Putting these together and
using the transitivity of the bisimilarity relation ≡, we conclude that (S(a), s′) ≡ (T(b), t′),
as desired.

Proposition 2.16. Let a ∼= b and c ∼= d. Then, a; c ∼= b; d, and also at c ∼= bt d.
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Proof. To prove a; c ∼= b; d, we only check the first clause in the definition of update
equivalence. Suppose that s(a; c)Ss′, i.e., there exists some s′′ such that a aS s′′ and s′′ cS(a) s′.
From a aS s′′ and a ∼= b, we infer that there is some t′′ with s bS t′′ and (S(a), s′′) ≡
(S(b), t′′). By using these together with the fact that c ∼= d, and applying Proposition 2.15,
we obtain some t′ such that t′′ cS(b)t

′ and (S(a)(c), s′) ≡ (S(b)(d), t′), as desired.
For the second claim, we again only prove the first clause in the definition of at c ∼=

b t d. Suppose that s(a t c)Ss′. By the definition of a t c, this means that we either have
s′ = (t, a) for some t satisfying s aS t, or else we have s′ = (t, b) for some t satisfying
s bS t. We only treat the first case (the other case is similar), so we have s′ = (t, b) and
s aS t. Using the fact that a ∼ b, we infer that there exists some t′ such that s bS t′ and
(S(a), t) ≡ (S(b), t′). Using these and taking the state s′′ := (t′, b) in the model S(bt d),
we can easily check that we have s (b t d)S s′′ and (S(a t c), s′) ≡ (S(b t d), s′′), as
desired.

Proposition 2.17. For all bisimulation-preserving a, we have a; 1 ∼= 1; a ∼= a, as well as a; 0 ∼=
0; a ∼= 0 and at 0 ∼= 0t a ∼= a.

Proof. Easy verification.

Proposition 2.18. Let a and b be standard bisimulation-preserving updates. If ϕ is preserved by
bisimulations and a ∼= b, then [a]ϕ = [b]ϕ, and also 〈a〉ϕ = 〈b〉ϕ.

Proof. We check the first assertion only. Fix S, and let s ∈ S be such that that s ∈ ([a]ϕ)S.
Let t ∈ S(b) be such that s bS t. We must show that t ∈ ϕS(b).

For this, we use s bS t and a ∼= b, and by the definition of update-equivalence we infer
that there exists some t′ such that s aS t′ and (S(a), t′) ≡ (S(b), t). From s ∈ ([a]ϕ)S and
s aS t′, it follows that t′ ∈ ϕS(a). This, together with (S(a), t′) ≡ (S(b), t) and the fact that
ϕ is preserved by bisimulations, implies that t ∈ ϕS(b), as desired.

Proposition 2.19. Let a and b be standard bisimulation-preserving updates. If a ∼= b, then a and
b have the same domain. That is, for all state models S, dom(aS) = dom(bS).

Proof. The domains are (〈a〉tr)S and (〈b〉tr)S, where recall that tr is the “universally true”
proposition. So the result follows from Proposition 2.18 and the fact that tr is preserved by
bisimulations.

Definition 2.20. Let Σ = (Σ,→A , pre) and Σ′ = (Σ′,→A , pre) be action models. As this
notation indicates, we shall not introduce additional notation to differentiate the arrows
and the pre functions on these action models. A bisimulation between Σ and Σ′ is a relation
R ⊆ Σ× Σ′ such that whenever σ R σ′, the following three properties hold:

1. pre(σ) = pre(σ′).
2. For A ∈ A and ρ such that σ→A ρ, there is some ρ′ such that σ′→A ρ′ and ρ R ρ′.
3. For A ∈ A and ρ′ such that σ′→A ρ′, there is some ρ such that σ→A ρ and ρ R ρ′.

We write σ ∼ σ′, and say that actions σ and σ′ are bisimilar, if there is a bisimulation R
between Σ and Σ′ such that σ R σ′.

Let π = (Σ, Γ) and ρ = (Σ′, Γ′) be program models. A bisimulation between π and ρ is
a bisimulation R between Σ and ∆ such that the following hold:

1. If σ ∈ Γ, then there is some σ′ ∈ Γ′ such that σ R σ′.
2. If σ′ ∈ Γ′, then there is some σ ∈ Γ such that σ R σ′.

If such a bisimulation exists, then we write π ∼ ρ, and say that the program models π and
ρ are bisimilar.



Logics 2023, 1 109

Proposition 2.21. If π = (Σ, Γ) is any program model, 1 is the above-defined program model for
“Skip” and 0 is the above-defined program model for “Crash”, then we have π; 1 ∼ 1; π ∼ π, as well
as π; 0 ∼ 0; π ∼ 0 and π t 0 ∼ 0t π ∼ π.

Proof. Easy verification.

Proposition 2.22. If two bisimulation-preserving program models are bisimilar, then they induce
equivalent updates.

Proof. Let π = (Σ, Γ) and ρ = (Σ′, Γ′) be program models, and let R be a bisimulation
between π and ρ. To prove our claim, we first construct a bisimulation R between the
update products S⊗ Σ and S⊗ Σ′, by putting for all states (s, σ) ∈ S⊗ Σ, (s′, σ′) ∈ S⊗ Σ′:

(s, σ)R(s′, σ′) iff s = s′ and σ Rσ′.

It is easy to check that this is a bisimulation relation. The atomic preservation is obvious:
(s, σR(s′, σ′) implies that s = s′, and so both (s, σ) and (s′, σ′) satisfy the same atomic sen-
tences as s = s′. For the forth clause, assume that we have (s, σ)→A (t, ρ) and (s, σ) R (s′, σ′).
From these, we obtain s→A t and σ→A ρ, as well as s = s′ and σ R σ′. Since R is a bisimu-
lation between Σ and Σ′, there must exist some ρ′ ∈ Σ′ such that σ′→A ρ′ and ρ R ρ′. This
gives us that pre(ρ) = pre(ρ′), and since (t, ρ) ∈ S⊗ Σ, we have that t ∈ pre(ρ) = pre(ρ′),
and so the state (t, ρ′) ∈ S⊗ Σ′ exists. This state is our witness for the forth clause: it is
easy now to check that we have (s, σ′)→A (t, ρ′) and (t, ρ) R (t, ρ′), as desired. The back
condition is similar.

We can now prove that the updates π and ρ are equivalent. Let a be the update
induced by π (via the update product), and let b be the update induced by ρ. We need to
prove that a ∼= b. For this, we only check the first condition in the definition of update
equivalence (the second condition is similar). Assume that s aS (s, σ) ∈ Σ with σ ∈ Γ. Since
R is a bisimulation between (Σ, Γ) and (Σ′, Γ′), there exists some σ′ ∈ Γ′ such that σ R σ′.
This implies that pre(σ) = pre(σ′), and so (s, σ) ∈ Σ gives us s ∈ pre(σ) = pre(σ′); hence,
the state (s, σ′) ∈ S⊗ Σ′ exists. This state is our witness for the first clause in the definition
of update equivalence: it is easy now to check that we have s bS (s, σ′) and (s, σ) R (s, σ′),
and so we also have (S⊗ Σ, (s, σ)) ≡ (S⊗ Σ′, (s, σ′)) (since R is a bisimulation between
S⊗ Σ and S⊗ Σ′), as desired.

Note Bisimilarity is not the weakest (most general) relation on program models that
implies update equivalence. Cf. the work in [13], in which a weaker such relation is studied
(‘action emulation’). So, in a sense, our notion of program bisimilarity is too strong for the
job that it was designed for. However, it has the advantage of simplicity, and it will be
sufficient for our purposes. It is also a very natural notion to study in the context of the
other concepts of bisimulation equivalence considered in this section.

3. Signature-Based Languages L(Σ) and Their Fragments

At this point, we have enough general definitions to present the syntax and semantics
of our signature-based languages L(Σ) and their important sublanguages L0(Σ) and L1(Σ).
Most of the remaining parts of this paper study these languages.

3.1. Syntax and Semantics

Fix an action signature Σ. See Figure 1 for the syntax of a logical language L(Σ),
together with its sublanguages L0(Σ) and L1(Σ).
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sentences ϕ true pi ¬ϕ ϕ ∧ ψ 2A ϕ 2∗Bϕ [π]ϕ
programs π skip crash σiψ1 · · ·ψn π t ρ π; ρ π∗

[[true]] = tr
[[p]] = p
[[ϕ ∧ ψ]] = [[ϕ]] ∧ [[ψ]]
[[¬ϕ]] = ¬[[ϕ]]
[[2A ϕ]] = 2A[[ϕ]]
[[2∗Bϕ]] = 2∗B [[ϕ]]
[[[π]ϕ]] = [[[π]]][[ϕ]]

[[skip]] = 1
[[crash]] = 0
[[σiψ1 . . . ψn]] = (Σ, σi, [[ψ1]] · · · [[ψn]])
[[π; ρ]] = [[π]]; [[ρ]]
[[π t ρ]] = [[π]] t [[ρ]]
[[π∗]] = [[π]]∗

For L1(Σ), we drop the π∗ construct. For L0(Σ), we drop the π∗ and 2∗B constructs.

Figure 1. The language L(Σ) and its semantics, and the fragments L0(Σ), and L1(Σ).

As in PDL, we have two sorts of syntactic objects: sentences and programs. The set of
sentences and the set of programs are simultaneously defined by mutual recursions. We
call programs of the form σψ1 · · ·ψn basic actions, where σ ∈ Σ. Here, the number n is the
number of action types in Σ, and basic actions are formed by postfixing any such action
type σ with an n-long string ~ψ of already-formed sentences ψj in our language 4. Arbitrary
programs are recursively formed from basic actions, as well as from the programs skip and
crash, by applying the standard regular program operations of PDL: non-deterministic
choice π t ρ, sequential composition π; ρ and iteration π∗. In their turn, sentences are
recursively built from atomic sentences π, by applying standard Boolean connectives, as
well as modalities 2A ϕ (for any agent A), 2∗Bϕ (for any set of agents B) and [π]ϕ (for any
program π).

The sublanguage L1(Σ) is obtained by dropping iteration π∗ from the constructs of
L(Σ), while the sublanguage L0(Σ) is obtained by dropping both iteration π∗ and the
common knowledge modalities 2∗Bϕ.

We use the following standard abbreviations: false = ¬true, ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ),
ϕ → ψ = ¬(ϕ ∧ ¬ψ), ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ), 3A ϕ = ¬2A¬ϕ, 3∗B = ¬2∗B¬ϕ, and
〈π〉ϕ = ¬[π]¬ϕ.

The semantics defines two operations by simultaneous recursion on L(Σ):
1. ϕ 7→ [[ϕ]], taking the sentences of L(Σ) into epistemic propositions.
2. π 7→ [[π]], taking the programs of L(Σ) into program models (and, hence, into induced

updates).

The formal definition is given in Figure 1. The first map ϕ 7→ [[ϕ]] might be called the
truth map for the language. When we began our study of state models, we started with a
“valuation” (or a “truth” map) ‖.‖S : AtSen→ P(S), assigning to each atomic sentence p a
set ‖p‖S of states. The truth map here extends this to sentences and actions of L(Σ). The
overall definition is by simultaneous recursion on L(Σ). We employ the standard device
of speaking of the definition in terms of a temporal metaphor. That is, we think of the
definition of the semantics of a sentence or action as coming “after” the semantics of its
subsentences and subactions.

With one key exception, the operations on the right-hand sides are immediate applica-
tions of our general definitions of the closure conditions on epistemic propositions from
Section 2.1 and the operations on program models from Section 2.6. A good example to
explain this is the clause for the semantics of sentences [π]ϕ. Assuming that we have a
program model [[π]], we obtain an induced update in Section 2.5 which we again denote
[[π]]. We also have an epistemic proposition [[ϕ]]. We can, therefore, form the epistemic
proposition [[[π]]][[ϕ]] (see Equation (4) in Section 2.2). Note that we have overloaded the
square-bracket notation; this is intentional, and we have done the same with other notation
as well.

Similarly, the semantics of skip and crash are the program models 1 and 0 of Section 2.6.



Logics 2023, 1 111

We also discuss the definition of the semantics for basic actions σi~ψ. For this, recall
that we have a general definition of a signature-based program model (Σ, Γ, ψ1, . . . , ψn),
where Γ ⊆ Σ and the ψ’s are any epistemic propositions. What we have in the semantics
of σi~ψ is the special case of this where Γ is the singleton {σi} and ψi is [[ψi]], a proposition
which we have already defined when we come to define [[σi~ψ]].

Logics Generated by Families of Signatures

Up until now, we have defined logics of the form L(Σ) for a single action signature Σ.
Recall also that each action signature is finite. It is also natural to think about the logic of all
finite action signatures. That is, we want to combine all of the logics L(Σ) even though we
cannot literally combine the action signatures.

More generally, given a family S of action signatures, we would like to combine all
the logics {L(Σ)}Σ∈S into a single logic. Let us assume the signatures Σ ∈ S are mutually
disjoint (otherwise, just choose mutually disjoint copies of these signatures). We define the
logic L(S) generated by the family S in the following way: the syntax is defined by taking the
same definition we had in Figure 1 for the syntax of L(Σ), but in which on the side of the
programs we take instead as basic actions all expressions of the form

σiψ1 · · ·ψn

where σ ∈ Σ, for some signature Σ ∈ S , and n is the length of the listing of non-trivial
action types of Σ. The semantics is again given by the same definition as in Figure 1, but
in which the clause about σψ1 · · ·ψn refers to the appropriate signature: for every Σ ∈ S ,
every σ ∈ Σ; if n is the length of the listing of Σ, then

[[σiψ1 · · ·ψn]] = (Σ, σ, [[ψ1]], . . . , [[ψn]]).

It is important to note that, in general, L(S) is not a signature-based language of the
form L(Σ) for any single (finite) signature Σ. However, our definition of signature-based
languages has a natural generalization to locally finite ’signatures’ 5, and then one can see
the languages L(S) as being based on such generalized signatures.

3.2. Examples

In this section, we provide examples of the concepts from Sections 2.1–3.1. Our
examples of state models are chosen with an eye towards one of the inexpressivity results
in Sections 6.2 and 6.3 near the end of the paper. So we know that they may appear artificial.
Still, we trust that having a suitably detailed example may help the reader.

First, we need to introduce some concrete examples of signature-based languages. The
language of public announcements L(Σpub) is the special case of our general class of languages
L(Σ) that is obtained by taking the action signature Σpub of public announcements, as we
defined it in Section 2.7: Σ = {Pub}, Pub→A Pub, and Pub→B Pub. We can similarly define the
language of completely private announcementsL(Σpri) by taking the signature Pri of all private
announcements, as defined in Section 2.7: Σ = {PriB : B ⊆ A} ∪ {skip}, with PriB→B PriB

for all B ∈ B ⊆ A, PriB→C skip for C 6∈ B ⊆ A, and skip→A skip for all agents A. For both
public and private announcements, we can consider sublanguages L0(Σpub), L1(Σpub),
L0(Σpri), and L1(Σpri), as above, by applying the corresponding syntactic restrictions.

In our following examples, we will more specifically fix our set AtSen of atomic
sentences to be a two-element set {p, q}, and fix the set A of agents to be the two-element
set {A, B}.

As a first example, we consider a family of state models Cn, one for each even positive
numbers n. Cn is a cycle of 5n points a1, . . . , a5n arranged as follows:

a1 oo
A // a2 oo

B // a3 · · · a5n−1 oo
A // a5n oo

B // a1
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Since n is even, for 1 ≤ i ≤ 5, the connection is ain−1 oo
A // ain oo

B // ain+1 (We are taking
subscripts modulo 5n here.) We also specify that p is true at all points except a1 and a2n+1,
and q is true only at a4n+1.

We will look at the sentence 〈Pub p〉3∗A,Bq, belonging to the language L1(Σpub), and
aim to evaluate in each of the models Cn. (Without abbreviations, this sentence would be
¬[Pub p]2∗A,B¬q.) The point of this first example is to calculate [[〈Pub p〉3∗A,Bq]]Cn . This
takes a few steps.

The definitions tell us that [[p]] = p, and so

[[p]]Cn = pCn
= ‖p‖Cn = {ai : i 6= 1, 2n + 1}.

We have a signature-based program model (Σpub, Pub,p). (In more detail, Σpub is an
action signature, our distinguished set Γ ⊆ Σ is {Pub}, and PRE(Pub) is the the proposition
p.) We can take the update product of this with Cn to obtain the model Cn ⊗ (Σpub, Pub, p).
The state set of this state model is

{(ai, Pub) : 1 ≤ i ≤ 5n & i 6= 1 & i 6= 2n + 1}.

The accessibilities are given by

(a2, Pub) oo B // (a3, Pub) oo A // · · · (a2n−1, Pub) oo A // (a2n, Pub)

(a2n+1, Pub) oo A // (a2n+2, Pub) oo B // · · · (a5n−1, Pub) oo A // (a5n, Pub)

In this model p is true at all points, and q is true only at (a4n+1, Pub). The update relation
(Σpub, Pub, p)Cn is

{(ai, (ai, Pub)) : 1 ≤ i ≤ 5n & i 6= 1 & i 6= 2n + 1}.

The intuition is that when we relativize the model to p (that is, we update the model with a
public announcement of p), a1 and a2n+1 disappear. The cycle breaks into two disconnected
components.

To save on notation, let us write Dn for the model Cn ⊗ (Σpub, Pub, p). It follows that

[[q]]Dn = ‖q‖Dn = {(a4n+1, Pub)},

and, therefore, that

[[3∗A,Bq]]Dn = (3∗A,Bq)Dn = {(ai, Pub) : 2n + 1 ≤ i ≤ 5n}.

It now follows that

[[〈Pub p〉3∗A,Bq]]Cn = {ai : (ai, Pub) ∈ Dn & (ai, Pub) ∈ [[3∗A,Bq]]Dn}
= {ai : 2n + 2 ≤ i ≤ 5n}

Later, we are going to be especially interested in the points an+1 and a3n+1. The analysis
above shows that an+1 does not belong to [[〈Pub p〉3∗A,Bq]]Cn , but a3n+1 does belong to it.
The intuition is that after we relativize the original cycle to p by deleting a1 and a2n+1, there
is no path from an+1 to a4n+1. But even after we make the deletion, there is a path from
a3n+1 to a4n+1, and this is why a3n+1 satisfies the sentence 〈Pub p〉3∗A,Bq.
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A Second Example

We next consider a different example based on the signature Pri of completely private
announcements. L1(Σpri) contains the following sentence

χ ≡ 〈PriA p, true〉3∗A3B¬p (8)

We show in Section 6.3 that χ cannot be expressed by any sentence in L1(Σpub) and that
3Aχ is not expressible in L1(Σpub), even by a set of sentences. This means that there
is no set T of sentences of L1(Σpub) such that for every state, (S, s), (S, s) |= ψ for each
ψ ∈ T iff (S, s) |= 〈PriA p true〉3∗A3B¬p. We take this inexpressibility result to be a formal
confirmation that a logical system with private announcements is more powerful than a
system with only public announcements.

Definition 3.1. For each non-zero natural number n we shall construct models Sn and Tn.
These two models have the same state set:

{a, b} ∪ {ci : 1 ≤ i ≤ n}.

The atomic proposition p is true at all points except b, and no other atomic propositions are
true anywhere. The arrows in Sn are given by

1. x→A x for all x.
2. a→A b.
3. b→A c1.
4. ci→A b for all 1 ≤ i ≤ n.
5. cn→B b.

Tn has all these arrows and exactly one more:

6. a→A c1.

The model Sn is shown in Figure 2. We did not show the reflexive →A arrows.

a A // b
A
// c1

A // c2
A // · · · A // ci

A //

A

xx · · · A // cn

A,B

zz

Figure 2. The model Sn omitting the reflexive A-arrows. The model Tn adds the arrow a→A c1.

For all x 6= a, the submodels of Sn and Tn reachable from x are the same. Therefore,
we have the following fact:

for all x 6= a, (Sn, x) |= ϕ iff (Tn, x) |= ϕ (9)

This holds for all ϕ in L(Σpub).
Let us calculate Sn ⊗ (Σpri, PriA, p, tr) and Tn ⊗ (Σpri, PriA, p, tr). Intuitively, we are

making a private announcement of p to A. To save on notation, we call the updated models
Ŝn and T̂n.

Here are some facts about the structure of Ŝn:

1. (a, PriA)→A (a, PriA).
2. The only →A -successor of (a, PriA) is itself. In particular, (a, PriA)→A (b, PriA) does

not hold, since (b, PriA) does not belong to the model.
3. (x, skip)→A (y, skip) whenever x→A y in Sn and similarly for (x, skip)→B (y, skip).
4. (ci, PriA)→A (ci+1, PriA) for 1 ≤ i < n.
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The structure of T̂n differs from Ŝn. Since a→A c1 in Tn, we have a path in T̂n:

(a, PriA) →A (c1, PriA) →A · · · →A (cn, PriA) →B (b, skip).

Once again, Ŝn contains no path from (a, PriA) to any other point, in particular, no path to
(b, skip).

The update relation between Sn and Ŝn is {(x, (x, PriA)) : x 6= b}. And from this, we
see that with χ from (8),

[[χ]]Sn = {x : (x, PriA) ∈ [[3∗A3B¬p]]Ŝn
} = {ci : 1 ≤ i ≤ n}.

In particular, a /∈ [[χ]]Sn .
The update relation between Tn and T̂n is the same, and we have

[[χ]]Tn = {x : (x, PriA) ∈ [[3∗A3B¬p]]T̂n
} = {x : x 6= b}.

And this time, a ∈ [[χ]]Tn .
In Section 6.3, we shall use these models to prove the result announced above: that our

sentence 3Aχ is not expressible by any set of sentences using public announcements only.
The intuition is that the models Sn and Tn differ on χ due to the private announcement in
that sentence, but as far as public announcements go, the two models are “pretty close”. Of
course, “pretty close” needs to be defined and studied, and this is what we do in our later
section. The formal proof does not use any of our other results, and the reader may turn to
it at this point.

3.3. Basic Properties

Proposition 3.2. Let ϕ be a sentence of L(Σ), and let α be an action of L(Σ). Then:

1. The epistemic proposition [[ϕ]] is preserved by bisimulation.
2. The update [[α]] is standard and preserves bisimulation.

Proof. By induction on L(Σ). For true and the atomic sentences pi, we use Proposition 2.9.
The same result takes care of the induction steps for all the sentential operators except [π]ϕ.
For this, we use Proposition 2.11 part 2, and also the induction hypothesis. Turning to the
programs, the standardness comes from Proposition 2.2 and the observation that signature-
based program models induce standard updates. The assertion that the interpretation
of programs of L(Σ) preserve bisimulation comes from Proposition 2.11 part 1; for the
programs σi~ψ, we use Proposition 2.12 and the induction hypothesis.

In what follows, we shall use Proposition 3.2 without mentioning it.

3.4. The Canonical Action Model

We henceforth restrict ourselves to the language L1(Σ), obtained by eliminating
iteration π∗ from our repertoire. Moreover, in this section, we focus on the program
expressions of L1(Σ). We introduce some useful meta-syntactic terms and notations, that
will allow us to structure (a subset of) our program expressions as a “syntactic program
model”, called the canonical action model.

Definition 3.3. A simple action of L1(Σ) is a program of L1(Σ) that can be obtained from
skip, crash and basic actions of L1(Σ) (of the form σ~ψ, but without the use of iteration π∗

within any precondition) by repeated applications of the sequential composition operation
π; π′ (but no sum operation t, and of course no iteration, since iteration is not present
in L1(Σ)). So, in particular, simple actions include all the basic actions of L1(Σ). We use
letters such as α and β to denote simple actions. We do so for the rest of this paper, without
further notice.
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3.4.1. The Canonical Action Model Ω

We define a program model Ω in several steps. The actions of the model Ω (that is,
the elements of its carrier set) are the simple actions of the language L1(Σ) (as defined just
above). For all A, the accessibility relation →A is the smallest relation such that

1. skip→A skip.
2. σi~ϕ→A σj~ψ if σi→A σj in Σ and ~ϕ = ~ψ.
3. If α→A α′ and β→A β′, then α; β→A α′; β′.

As before, we use the notation −→C∗ for the reflexive-transitive closure of the union of
all accessibility relations →A (on simple actions) labelled by agents A ∈ C. In particular, the
largest such relation→∗A is obtained by taking C = A to be the set of all agents.

Proposition 3.4. As a frame, Ω is locally finite: for each simple α, there are only finitely many β
such that α−→A∗ β.

Proof. By induction on α; we use heavily the fact that the accessibility relations on Ω are
the smallest family with their defining property. For the simple action expressions σ~ψ, we
use the assumption that the action model Σ underlying all our definitions is finite. (Taking
it to be locally finite would also be sufficient.)

Next, we define PRE : Ω→ L1(Σ) by recursion so that

PRE(skip) = true
PRE(crash) = false

PRE(σi~ψ) = ψi
PRE(α; β) = 〈α〉PRE(β)

This function PRE is not the function pre which is part of the structure of an epistemic
action model. However, there is a connection: We are in the midst of defining the epistemic
action model Ω, and its pre function is defined in terms of PRE.

Another point: the last clause in the definition of PRE could read PRE(α; β) = PRE(α)∧
[α]PRE(β). This is equivalent to what we have above.

We set
pre(σ) = [[PRE(σ)]].

This simple action model Ω is the canonical epistemic action model; it plays the same role in
our work as the canonical model in modal logic.

Remark 3.5. The structure (Ω,→A , PRE) is entirely syntactic. It is not an action model. This
contrasts with the canonical action model Ω = (Ω,→A , pre); the last component of this
structure is semantic. The syntactic structure (Ω,→A , PRE) is the one which is actually used
in the statement of the action rule of the logical system. We emphasize this point to allay
any suspicion that our logical system is formulated in terms of semantic concepts.

This is also perhaps a good place to remind the reader that neither PRE nor pre is a first-
class symbol in L(Σ); it is only a defined symbol. In Section 5, below, we shall introduce
another language called L+1 (Σ). In that language, PRE will be a first-class function symbol.

We now proceed to study the main properties of the canonical action model.

Lemma 3.6. For any action type σ ∈ Σ and simple actions α, β ∈ Ω, we have the following
bisimilarities between program models:

1. (Σ, σi, [[ψ1]] · · · [[ψn]]) ∼ (Ω, σi~ψ)
2. (Ω, α; β) ∼ (Ω, α); (Ω, β)

where in the right-hand side of the second part we use the composition ; of program models.
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Proof. For the first claim, the bisimulation is the relation {(σj, σj~ψ) : 1 ≤ j ≤ n}, where n is
the number of elements in Σ.

For the second claim, the bisimulation relates any action of the form α′; β′ in Ω with
the pair (α′, β′) in Ω×Ω. It is easy to check that this is a bisimulation betwen the action
models Ω and Ω; Ω, which obviously relates α; β with (α, β), as desired.

Definition 3.7. For any α ∈ Ω, let α̂ be the program model (Ω, {α}). As in Section 2.5, we
use the same notation α̂ to denote the induced update. (However, it will be important to
distinguish the two uses, and so we speak of the program model α̂ and also the update α̂.)

We can now prove the main result on the canonical action model.

Theorem 3.8. Let α ∈ Ω. Then, as updates, we have [[α]] ∼= α̂.

Proof. By induction on α. For skip and crash, it is easy to check that, as updates, ˆskip is
equivalent to the identity update 1, and ˆcrash is equivalent to 0.

We next consider an action α := σi~ψ. By the definition of the semantics, we have
[[α]] = (Σ, σi, [[ψ1]] · · · [[ψn]]), while α̂ = (Ω, σi~ψ). By the first claim in the previous Lemma,
these program models are bisimilar; hence, they induce equivalent updates.

Finally, consider simple actions of the form α; β. By the semantics, [[α; β]] = [[α]]; [[β]],
and by the induction hypothesis, this is the same as α̂; β̂. By the second claim in the previous
Lemma, this last program model is bisimilar with α̂; β; hence, the the induced updates are
equivalent.

4. The Logical System for Validity of L1(Σ) Sentences

We write |= ϕ to mean that for all state models S and all s ∈ S, s ∈ [[ϕ]]S. In this case,
we say that ϕ is valid.

In principle, we are of course interested in the validities of the full languages L(Σ).
But as has already been mentioned, the satisfiability problems for these languages are, in
general, not recursively axiomatizable. (See [14] for details on this.) This is one of the
reasons we also consider sublanguages L0(Σ) and L1(Σ). It turns out that L0(Σ) is the
easiest to study: it is of the same expressive power as ordinary multi-modal logic. The
main completeness result of the paper is a sound and complete proof system for the validities
in L1(Σ).

In Figure 3, below, we present the sound and complete logic for L1(Σ). We write ` ϕ
if ϕ can be obtained from the axioms of the system using its inference rules. We often omit
the turnstile ` when it is clear from the context.

Most of the system will be quite standard from modal logic. The action axioms and
the action rule are new, however. These include the in the atomic permanence axiom; note
that, in this axiom, p is an atomic sentence. The axiom says that announcements do not
change the brute fact of whether or not p holds. This axiom reflects the fact that our actions
do not change any kind of local state.

The Action-Knowledge Axiom gives a criterion for knowledge after an action. It is
perhaps easier to appreciate in dual form:

〈σi~ψ〉3A ϕ↔ (ψi ∧
∨
{3A[σj~ψ]ϕ : σi→A σj in Σ}).

In words, two sentences are equivalent: first, the assertion that the action σi~ψ may be
executed, and as a result of the execution, agent A will consider ϕ possible; and second,
the precondition ψi of the action holds, and A considers it possible (before the action) that
the action is really σj and that there is some possible world in which that action σj may
be executed and results in a state satisfying ϕ. This axiom should be compared with the
Ramsey axiom in conditional logic.
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Basic Axioms
All sentential validities
([π]-normality) ` [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ)
(2A-normality) ` 2A(ϕ→ ψ)→ (2A ϕ→ 2Aψ)

∗ (2∗C -normality) ` 2∗C(ϕ→ ψ)→ (2∗Cϕ→ 2∗Cψ)

∗ Epistemic Mix Axiom ` 2∗Cϕ→ ϕ ∧∧{2A2
∗
Cϕ : A ∈ C}

Action Axioms
(Atomic Permanence) ` [σi~ψ]p↔ (ψi → p)
(Partial Functionality) ` [σi~ψ]¬χ↔ (ψi → ¬[σi~ψ]χ)
(Action-Knowledge) ` [σi~ψ]2A ϕ↔ (ψi →

∧{2A[σj~ψ]ϕ : σi→A σj in Σ})

(Skip Axiom) ` [skip]ϕ↔ ϕ
(Crash Axiom) ` [crash]false
(Composition Axiom) ` [π][ρ]ϕ↔ [π; ρ]ϕ
(Choice Axiom) ` [π t ρ]ϕ↔ [π]ϕ ∧ [ρ]ϕ

Modal Rules
(Modus Ponens) From ` ϕ and ` ϕ→ ψ, infer ` ψ
([π]-necessitation) From ` ψ, infer ` [π]ψ
(2A-necessitation) From ` ϕ, infer ` 2A ϕ

∗ (2∗C -necessitation) From ` ϕ, infer ` 2∗Cϕ

∗ Action Rule

Let ψ be a sentence, let α be a simple action, and let C be a set of agents. Let there be
sentences χβ for all β such that α−→C∗ β (including α itself), and such that

1. ` χβ → [β]ψ;
2. If A ∈ C and β→A γ, then ` (χβ ∧ PRE(β))→ 2Aχγ.
From these assumptions, infer ` χα → [α]2∗Cψ.

Figure 3. The logical system for L1(Σ). For L0(Σ), we drop the ∗ axioms and rules. The definition of
PRE, →A and −→C∗ in the action rule is given in Section 3.4.

The statement of our action rule uses the meta-syntactic terminology introduced in
Section 3.4; in particular, the notion of simple actions, the syntactic accessibility relations
→A and −→C∗ , and the syntactic precondition map PRE defined on simple actions in the
(syntactic version of the) canonical action model. As for its meaning, the action rule gives a
necessary criterion for common knowledge after a simple action. Since common knowledge is
formalized by the 2∗B construct, this rule is a kind of induction rule. (The sentences χβ play
the role of strong induction hypotheses.)

Remark 4.1. Recall that −→C∗ is an abbreviation for the reflexive and transitive closure of
the relation

⋃
A∈C →A . Recall also from Proposition 3.4 that there are only finitely many β

such that α−→C∗ β. So even though the action rule might look like it takes infinitely many
premises, it really only takes finitely many.

Remark 4.2. It is possible to drop the composition axiom in favor of a more involved
version of the action rule. The point is we shall later introduce normal forms for sentences,
and using the composition axiom will greatly simplify these normal forms. Moreover,
adding the composition axiom leads to shorter proofs. The action rule here is geared
towards those normal forms. So if we were to drop the composition axiom, we would need
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a stronger, more complicated, formulation of the action rule, one which involved sequences
of actions. It is not terribly difficult to formulate such a rule, and completeness can be
obtained by an elaboration of the work, which we shall do.

4.1. Soundness of the Axioms

In this section, we check the soundness of the axioms of the system (but not yet the
soundness of the action rule). The basic axioms are all routine, and so we omit the details
on them.

Proposition 4.3. The atomic permanence axiom [σi~ψ]p↔ (ψi → p) is sound.

Proof. Recall from Section 2.7.1 how [[σi~ψ]] works; call this update r. Fix a state model S.
The following are equivalent:

1. s ∈ [[[σi~ψ]p]]S.
2. s ∈ ([r]p)S.
3. If s rS t, then t ∈ pS(r).
4. If (s, σi) ∈ S(r), then (s, σi) ∈ pS(r).
5. If s ∈ [[ψi]]S, then s ∈ ‖p‖S = pS.
6. s ∈ [[ψi → p]]S.

Most of the individual equivalences are easy, and we only comment on (3)⇐⇒(4) and
(4)⇐⇒(5). The definition of the update r = (Σ, σi) implies that S(r) = S⊗ Σ. And rS has
the property that everything which s ∈ S is related to by rS is of the form (s, σi), where σi
is from the statement of this axiom and (s, σi) ∈ S(r). These points imply the equivalence
(3)⇐⇒(4). For (4)⇐⇒(5), note that (s, σi) ∈ S(r) if s ∈ pre(σi)S = [[ψi]]S; also the definition
of the update product in Equation (7) implies that (s, σi) ∈ pS(r) iff s ∈ ‖p‖S.

Proposition 4.4. The partial functionality axiom [σi~ψ]¬χ↔ (ψi → ¬[σi~ψ]χ) is sound.

Proof. Again, let r = [[σi~ψ]]. Also, let χ = [[χ]]. Fix a state model S. The following are
equivalent:

1. s ∈ [[[σi~ψ]¬χ]]S.
2. s ∈ ([r]¬χ)S.
3. If s rS t, then t ∈ ¬χS(r).
4. If s rS t, then t /∈ χS(r).
5. If s ∈ [[ψi]]S, then (s, σi) /∈ ([r]χ)S.
6. If s ∈ [[ψi]]S, then s /∈ ¬χS(r).
7. If s ∈ [[ψi]]S, then s ∈ (¬[r]χ)S.
8. s ∈ [[ψi → ¬[r]χ]]S.

The crucial equivalence here is (6)=⇒(5). The reason this holds is that in the action model
for σi~ψ, there is just one distinguished world. So for each fixed s ∈ S, there is at most one t
such that s rS t; i.e., (s, σi).

Proposition 4.5. The Action-Knowledge Axiom

[σi~ψ]2A ϕ↔ (ψi →
∧
{2A[σj~ψ]ϕ : σi→A σj in Σ})

is sound.

Proof. Again, let r = [[σi~ψ]]. Fix a state model S. The following are equivalent:

1. s ∈ [[[σi~ψ]2A ϕ]]S.
2. s ∈ [r][[2A ϕ]]S.
3. If s rS u, then u ∈ [[2A ϕ]]S(r).
4. If s ∈ [[ψi]]S, then (s, σi) ∈ [[2A ϕ]]S(r).
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5. If (s, σi) ∈ S(r), then for all (t, σj) such that (t, σj) ∈ S(r), s→A t and σi→A σj, we have
(t, σj) ∈ [[ϕ]]S(r).

6. If (s, σi) ∈ S(r), then for all t and all σj such that s→A t and σi→A σj: if (t, σj) ∈ S(r),
then (t, σj) ∈ [[ϕ]]S(r).

7. If (s, σi) ∈ S(r), then for all t and σj such that s→A t and σi→A σj: t ∈ [[[σj~ψ]ϕ]]S.
8. If s ∈ [[ψi]]S, then for all σj such that σi→A σj, s ∈ [[2A[σj~ψ]ϕ]]S.
9. s ∈ [[ψi →

∧{2A[σj~ψ]ϕ : σi→A σj}]]S.

This completes the proof.

Proposition 4.6. The action-mix axiom [π∗]ϕ→ ϕ ∧ [π][π∗]ϕ is sound.

Proof. This is standard.

Proposition 4.7. The skip axiom [skip]ϕ↔ ϕ is sound.

Proof. Fix a state model S. Recall that the semantics of skip is the update 1. So the following
are equivalent:

1. s ∈ [[[skip]ϕ]]S.
2. If s 1S t, then t ∈ [[ϕ]]S(1).
3. s ∈ [[ϕ]]S.

This completes the proof.

Proposition 4.8. The crash axiom [crash]false is sound.

Proof. Recall that [[crash]] = 0, the update having an empty transition relation 0S. Working
through the definitions, [crash]false is easily seen to hold vacuously.

Proposition 4.9. The composition axiom [π; ρ]ϕ↔ [π][ρ]ϕ is sound.

Proof. Write r for [[π]] and b for [[ρ]]. Fix a state model S. The following are equivalent:

1. s ∈ [[[π; ρ]ϕ]]S.
2. If s [[π; ρ]]S u, then u ∈ [[ϕ]]S(r;b).

3. If s (r; b)S u, then u ∈ [[ϕ]]S(r;b).

4. If s rS t and t bS(r) u, then u ∈ [[ϕ]]S(r;b).

5. If s rS t, then t ∈ [[[ρ]ϕ]]S(r).
6. s ∈ [[[π][ρ]ϕ]]S.

The equivalence of (3) and (4) is by the definition of relational composition. The remaining
equivalences are from the semantic definitions. The equivalence of (4) and (5) is by the fact
that S(r; b) = S(r)(b).

Proposition 4.10. The choice axiom [π t ρ]ϕ↔ [π]ϕ ∧ [ρ]ϕ is sound.

Proof. Fix a state model S; we drop S from the notation in the rest of this proof. Write γ
for π t ρ, r for [[π]], b for [[ρ]], and c for [[γ]]. Then, the following are equivalent:

1. s ∈ [[[π t ρ]ϕ]]S.
2. If s c u, then u ∈ [[ϕ]]S(c).
3. If s r t, then t ∈ [[ϕ]]S(c); and if s b t′, then t′ ∈ [[ϕ]]S(c).
4. If s r t, then t ∈ [[ϕ]]S(r); and if s b t′, then t′ ∈ [[ϕ]]S(b).

5. s ∈ [[[π]ϕ]]S and s ∈ [[[ρ]ϕ]]S.
6. s ∈ [[[π]ϕ ∧ [ρ]ϕ]]S.
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The equivalence (2)⇐⇒(3) comes from the fact that each of the u such that s c u is either
either (a) an element t of S(r) related to s by r, or else (b) an element t′ of S(b) related to s
by b. This is by the definition of rt b.

We show the equivalence (3)⇐⇒(4) by considering the cases (a) and (b) noted just
above. We use the fact that the natural injections of S(r) and S(b) in S(c) are bisimulations,
and also the fact that [[ϕ]] is preserved by bisimulations (see Proposition 3.2).

4.2. Soundness of the Action Rule

To show that the action rule is sound, we need the following preliminary result.

Lemma 4.11. s ∈ [[〈α〉3∗Cϕ]]S if there is a sequence of states from S

s = s0 →A1 s1 →A2 · · · →Ak−1 sk−1 →Ak sk

where k ≥ 0, and also a sequence of actions of the same length k,

α = α0 →A1 α1 →A2 · · · →Ak−1 αk−1 →Ak αk

such that Ai ∈ C and si ∈ pre(αi)S for all 0 ≤ i < k, and sk ∈ [[〈αk〉ϕ]]S.

Remark 4.12. The case k = 0 just says that s ∈ [[〈α〉3∗Cϕ]]S is implied by s ∈ [[〈α〉ϕ]]S.

Proof. The following are equivalent:

1. s ∈ [[〈α〉3∗Cϕ]]S.
2. s ∈ (〈[[α]]〉[[3∗Cϕ]])S.
3. s ∈ (〈α̂〉[[3∗Cϕ]])S.
4. s ∈ pre(α)S, and (s, α) ∈ [[3∗Cϕ]]S⊗Ω.
5. s ∈ pre(α)S, and for some k ≥ 0 there is a sequence in S⊗Ω,

(s, α) = t0 →A1 t1 →A2 · · · →Ak−1 tk−1 →Ak tk

such that Ai ∈ C and tk ∈ [[ϕ]]S⊗Ω.
6. There are sequences of states s = s0, . . . , sk and actions α0, . . . , αk as in the statement

of this lemma.

The first equivalence is by the semantics of L(Σ). The equivalence (2)⇐⇒(3) uses the
equality [[α]] = α̂ which we saw in the concluding statement of Theorem 3.8. in Section
3.4.1, and also Proposition 2.18. Equivalence (3)⇐⇒(4) uses our overall definitions and
the structure of Ω as an action model. (4)⇐⇒(5) is just the semantics of 3∗C . Finally,
the equivalence (5)⇐⇒ (6) again uses the conclusion of Theorem 3.8. That is, for all i,
(si, α) ∈ S⊗Ω, if si ∈ pre(αi)S.

Proposition 4.13. The action rule is sound.

Proof. Assume that s ∈ [[χα]]S but also s ∈ [[〈α〉3∗C¬ψ]]S. According to Lemma 4.11, there
is a labeled sequence of states from S

s = s0 →A1 s1 →A2 · · · →Ak−1 sk−1 →Ak sk

where k ≥ 0 and each Ai ∈ C, and also a sequence of actions of length k, with the same
labels,

α = α0 →A1 α1 →A2 · · · →Ak−1 αk−1 →Ak αk

such that si ∈ pre(αi)S for all 0 ≤ i < k, and sk ∈ [[〈αk〉¬ψ]]S. If k = 0, we would have
s ∈ [[〈α〉¬ψ]]S. But one of the assumptions in the statement of the action rule is that
` χα → [α]ψ. So we would have s ∈ [[[α]ψ]]S. This would be a contradiction.
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Now we argue the case k > 0. We show by induction on 1 ≤ i ≤ k that si ∈ [[χαi ]]S. The
case i = 0 is the opening assumption of this proof. Assume that si ∈ [[χαi ]]S. By hypothesis,
si ∈ pre(αi)S. In view of the second assumption in the action rule, si ∈ [[2Ai+1 χαi+1 ]]S.
Hence, si+1 ∈ [[χαi+1 ]]S. This completes our induction.

In particular, sk ∈ [[χαk ]]S. Using again the first assumption in the action rule, we have
sk ∈ [[[αk]ψ]]S. This is a contradiction.

4.3. Syntactic Facts

At this point, we have presented the semantic facts which we need concerning L1(Σ).
These include the soundness of the logical system for validity. To prove completeness, we
also need some syntactic facts. We could have presented this section earlier, but since it
leans on the action rule, we have delayed it until establishing the soundness of that rule.

In this section, α, β, etc., denote simple actions in L1(Σ).

4.3.1. A Stronger form of the Action-Knowledge Axiom

At this point, we establish a stronger form of the action-knowledge axiom. In Figure 3
in Section 4, this axiom was stated only for basic actions. The strengthenings here is to
simple actions, that is, to compositions of basic actions, skip and crash.

Lemma 4.14. The Action-Knowledge Axiom is provable for all simple actions α:

` [α]2A ϕ↔ (PRE(α)→
∧
{2A[β]ϕ : α→A β in Ω}) (10)

Proof. By induction on α. If α is skip, PRE(α) = true, the only β with α→A β is skip, and
equivalence (10) reads:

` [skip]2A ϕ↔ (true→ 2A[skip]ϕ)

And this is an easy consequence of propositional reasoning, the skip axiom, and 2A
necessitation. If α is crash, PRE(α) = false, and there are no β such that α→A β. Equivalence
(10) then reads:

` [crash]2A ϕ↔ (false→ true).

By the crash axiom and modal reasoning, ` [crash]2A ϕ; and so the assertion just above
holds.

If α is of the form σi~ψ, then we simply have the Action-Knowledge Axiom in the form
we know it.

So assume our lemma for α′ and α; we prove it for α′; α. We show that

` [α′; α]2A ϕ↔ (PRE(α′; α)→
∧
{2A[β

′; β]ϕ : α′; α→A β′; β in Ω }) (11)

We start with the equivalence in (10), use [α′] necessitation and normality, and obtain

` [α′][α]2A ϕ↔ ([α′]PRE(α)→
∧
{[α′]2A[β]ϕ : α→A β in Ω}) (12)

By the induction hypothesis on α′ and several uses of the composition axiom, we have that
for all β,

` [α′]2A[β]ϕ↔ (PRE(α′)→
∧
{2A[β

′; β]ϕ : α′→A β′ in Ω}).

The composition axiom and (12) lead to the provable equivalence of [α′; α]2A ϕ and

[α′]PRE(α)→ (PRE(α′)→
∧
{2A[β

′; β]ϕ : α→A β and α′→A β′ in Ω }).
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But ` PRE(α′; α)↔ PRE(α′)∧ [α′]PRE(α). In addition, we have a general fact α′; α→A β′; β if
α′→A β′ and α→A β. Using these observations and some propositional reasoning, we obtain
(11), as desired.

Remark 4.15. There are no sound versions of the Action-Knowledge Axiom for actions
containing t. For example, let A be a singleton, hence omitted from the notation. Consider
Σ = {σ, τ} as an action signature with the enumeration σ, τ, and with (say) the arrows
σ→ τ and τ → σ. Note that by atomic permanence, [σ pq]r is equivalent to p→ r; [τ pq]r
is equivalent to q→ r; by action-knowledge and atomic permanence, [σ pq]2r is equivalent
to p→ 2(q→ r); and [τ pq]2r is equivalent to q→ 2(p→ r). Consider also the sentence
[(σ pq) t (τ pq)]2r. By the choice axiom, it is equivalent to

(p→ 2(q→ r)) ∧ (q→ 2(p→ r)). (13)

Now, we did not define PRE((σ pq) t (τ pq)), but the most reasonable choice is p ∨ q. And
we did not define the accessibility structure of actions containing t, but in this case the
most likely choice is to have (σ pq) t (τ pq) relate to itself and nothing else. But then when
we write out the right-hand side of the equivalence (10), we obtain

(p ∨ q)→ (2(p→ r) ∧2(q→ r)).

Clearly, this is not equivalent to (13). Even if one were to change PRE((σ pq) t (τ pq)) to,
say, true, or to p ∧ q, we still would not have an equivalence: (13) is stronger.

4.3.2. A Stronger form of the Partial Functionality Axiom

We shall also need the following result, a version of the partial functionality axiom:

Lemma 4.16. ` 〈α〉ϕ↔ PRE(α) ∧ [α]ϕ.

Proof. This is an induction, much like the proof of Lemma 4.14, above.

4.3.3. Syntactic Bisimulation

Our next set of results pertains to a syntactic notion of action equivalence, one with a
bisimulation-like flavor.

Definition 4.17. A syntactic bisimulation is a relation R on the set Ω of simple actions of
L(Σ) with the following property: if α R β, then

1. ` PRE(α)↔ PRE(β).
2. For all α′ and A such that α→A α′, there is some β′ such that β→A β′ and α′ R β′.
3. For all β′ and A such that β→A β′, there is some α′ such that α→A α′ and α′ R β′.

We say that α and β are provably equivalent if there is some syntactic bisimulation relating
them. We write α ≡ β in this case.

For sentences, we write ϕ ≡ ψ and say that ϕ and ψ are equivalent if ` ϕ↔ ψ.

Lemma 4.18. ` 〈α〉true↔ PRE(α).

Proof. By induction on α. For α = skip and α = crash, we use the skip axiom and the crash
axiom, respectively. Here is the argument for α of the form σi~ψ. First, by necessitation
we have ` [σi~ψ]true. And by this and partial functionality, ` [σi~ψ]¬true ↔ ¬ψi. So
` ¬[σi~ψ]¬true↔ ψi. That is, ` 〈σi~ψ〉true↔ ψi.

Finally, assume the result for β. Then, by normality and necessitation, ` 〈α〉〈β〉true↔
〈α〉PRE(β). So ` 〈α〉〈β〉true ↔ PRE(α; β). We conclude by showing as a general fact that
` 〈α〉〈β〉ϕ↔ 〈α; β〉ϕ. For this, the composition axiom tells us that ` [α][β]¬ϕ↔ [α; β]¬ϕ.
So ` ¬[α]¬¬[β]¬ϕ↔ ¬[α; β]¬ϕ. Thus, ` 〈α〉〈β〉ϕ↔ 〈α; β〉ϕ, as desired.
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Lemma 4.19. The following monoid-type laws hold:

1. ` PRE(α; skip)↔ PRE(α)↔ PRE(skip; α).
2. ` PRE(α; (β; γ))↔ PRE((α; β); γ).

Proof. We use the definitions to calculate

PRE(α; skip) = 〈α〉true
PRE(skip; α) = 〈skip〉PRE(α).

We obtain a formal proof using Lemma 4.18 and the skip axiom. Turning to the second law,

PRE(α; (β; γ)) = 〈α〉PRE(β; γ)
= 〈α〉〈β〉PRE(γ)
≡ 〈α; β〉PRE(γ)
= PRE((α; β); γ).

The equivalence above which mentions ≡ uses the composition axiom.

Lemma 4.20. Concerning the syntactic equivalence ≡ on Ω:

1. The relation ≡ is an equivalence relation.
2. If ϕ1 ≡ ψ1, . . ., ϕn ≡ ψn, then σi~ϕ ≡ σi~ψ.
3. α; skip ≡ α ≡ skip; α.
4. α; (β; γ) ≡ (α; β); γ.
5. If α ≡ α′ and β ≡ β′, then α; β ≡ α′; β′.

Proof. The first part is routine. Part (2) uses the bisimulation consisting of all pairs
(σj~ϕ, σj~ψ) such that 1 ≤ j ≤ n and for all i, ϕi ≡ ψi. Lemma 4.19 is used in parts (3)
and (4). The rest of the argument for part (3) is easy and we omit it. For part (4), we take R
to be the set of pairs

(α′; (β′; γ′), (α′; β′); γ′)

such that for some sequence w of →A with A ∈ A∗, α′ is reachable from α via w, and
similarly for β′ and γ′ (via the same w). Part (5) is similar.

Lemma 4.21. For all A ∈ C and all β such that α→A β,

1. ` [α]2∗Cψ→ [α]ψ.
2. ` [α]2∗Cψ ∧ PRE(α)→ 2A[β]2

∗
Cψ.

Proof. Part (1) follows from the epistemic-mix axiom and modal reasoning. For part (2), we
start with a consequence of the epistemic-mix axiom: ` 2∗Cψ→ 2A2

∗
Cψ. Then, by modal

reasoning, ` [α]2∗Cψ → [α]2A2
∗
Cψ. By the Action-Knowledge Axiom in the generalized

form of Lemma 4.14, we have ` [α]2∗Cψ ∧ PRE(α)→ 2A[β]2
∗
Cψ.

We present next our main result on the syntactic equivalence of actions. It is a syntactic
version of Proposition 2.18.

Lemma 4.22. Let α and β be simple actions. If α ≡ β, then for all ϕ, ` [α]ϕ↔ [β]ϕ.

Proof. By induction on ϕ. Fix a syntactic bisimulation R relating α and β. For ϕ = true or
an atomic sentence pi, our result is easy. The induction steps for ¬ and ∧ are trivial. The
step for 2A is not hard, and so we omit it.

We next check the result for sentences [γ]ϕ. We need to see that

` [α][γ]ϕ↔ [α′][γ]ϕ.
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For this, it is sufficient by the composition axiom to show that ` [α; γ]ϕ ↔ [α′; γ]ϕ. By
Lemma 4.20, parts (1) and (5), α; γ ≡ α′; γ. So we have completed the induction hypothesis.

This leaves the step for sentences of the form 2∗Bϕ, assuming the result for ϕ. We use
the action rule to show that ` [α]2∗Cϕ→ [β]2∗Cϕ. We need a functional witness to R; that is,
a map β′ 7→ α′ for all β′ such that β−→A∗ β′, such that α′Rβ′ for all these actions. Further, let
χβ′ be [α′]2∗Cϕ. We need to show that for all A ∈ C and all β′→A β′′,

a. ` [α′]2∗Cϕ→ [β′]ϕ;

b. If β′→A β′′, then ` [α′]2∗Cϕ ∧ PRE(β′)→ 2A[α
′′]2∗Cϕ.

For (a), we know from Lemma 4.21 that ` [α′]2∗Cϕ → [α′]ϕ. By induction hypothesis
on ϕ, ` [α′]ϕ ↔ [β′]ϕ. And this implies (a). For (b), Lemma 4.21 tells us that under the
assumptions,

` [α′]2∗Cϕ ∧ PRE(α′)→ 2A[α
′′]2∗Cϕ.

The fact that R is a syntactic bisimulation tells us that ` PRE(α′) ↔ PRE(β′). This
implies (b).

This completes the induction on ϕ.

Lemma 4.22 will be used in several places to come.

5. Completeness Theorems

In this section, we prove the completeness of our logical systems for L0(Σ) and L1(Σ).
(See Figure 1 for these.) Recall that the difference between the two languages is that the
second has the common-knowledge propositional operators 2∗B while the first does not.
This difference makes the bigger system much more expressive, and more difficult to study.
As it happens, the extension of L1(Σ) to the full logic L(Σ), the extension via the action
iteration operation π∗, leads to a logical language whose validity problem is complete
Π1

1. So there cannot be a recursively axiomatized logical system for the validities of L(Σ).
Returning to the smaller L1(Σ), even here the common-knowledge operators 2∗B give a
logical system which is not compact. So we cannot have a strongly complete logic for it;
that is, we cannot axiomatize the notion of validity under hypotheses T |= ϕ. The best one
can hope for is weak completeness: ` ϕ if and only if |= ϕ. We prove this in Theorem 5.31.
As a result of some preliminary results aimed toward that result, we establish the strong
completeness of our axiomatization of the weaker logic L0(Σ). The work there is easier
because it relies on a translation into modal logic.

In a later section, we show that in contrast to our translation results for L0(Σ), the
larger language L1(Σ) cannot be translated into L or even to L(2∗) (modal logic with extra
modalities 2∗B). So completeness results for L1(Σ) cannot simply be based on translation.

5.1. The Ideas

Our completeness proofs are somewhat involved, and it might help the reader to have
a preview of some of the ideas before we get started. For L0(Σ), the leading idea is that we
can translate the logic back to ordinary modal logic. Then we obtain completeness by taking
any logical system for modal logic and adding whatever principles are needed in order to
make the translation. This idea is simple enough, and after looking at a few examples one
can see how the translation of L0(Σ) to modal logic should go. But the formal definition of
the translation is complicated. Our definition goes via a term rewriting system related to the
axioms of the logic. Part of our work in this section will be to prove the termination of our
system. It would have been nice to use some off-the-shelf results of term rewriting theory
to get the termination of our system, but this does not seem to be possible. In any case, we
prove termination by establishing a decreasing interpretation of the system; that is, rewriting
a sentence leads to a decrease in an order < that we study at length. Our interpretation is
exponential rather than polynomial, and it was found by hand.

When we turn to L1(Σ), our model is the filtration proof of the completeness of PDL
due to Kozen and Parikh [15]. We need to use the action rule rather than an induction rule,
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but modulo this difference, the work is similar. We also need to use some of the details on
the ordering < mentioned above. That is, even if one were interested in the completeness
theorem of L0(Σ) alone, our proof would still involve the general rewriting apparatus.

Definition 5.1. Let NF be the smallest set of ground sentences and actions in L1(Σ) with
the following properties:

1. Each atomic p belongs to NF .
2. If ϕ, ψ ∈ NF , then also ¬ϕ, ϕ ∧ ψ, 2A ϕ, and 2∗Cϕ belong to NF .
3. If α ∈ NF , ϕ ∈ NF , and C ⊆ A, then [α]2∗Cϕ belongs to NF .

4. If k ≥ 0, if ~ψ1, . . ., ~ψk is a sequence of sequences of length n(Σ) of elements of NF ,
and if σ1, . . . , σk ∈ Σ,

(· · · ((σ1
~ψ1; σ2

~ψ2); · · · ; σk
~ψk) (14)

is an action term in NF .

Lemma 5.2. There is a function nf : L1(Σ)→ NF such that for all ϕ, ` ϕ↔ nf (ϕ). Moreover,
if ϕ ∈ L0(Σ), then nf (ϕ) is a purely modal sentence (it contains no actions).

Lemma 5.3. There is a well-order < on L1(Σ) such that for all ϕ and α:

1. nf (ϕ) ≤ ϕ.
2. PRE(α) < [α]ϕ.
3. If α→A β, then [β]ϕ < ¬[β]ϕ < [α]2∗Cϕ.

Lemma 5.4. For every ϕ there is a finite set f (ϕ) ⊆ NF such that

1. f (ϕ) is closed under subsentences.
2. If [γ]2∗Cχ ∈ f (ϕ), γ−→C∗ δ, and A ∈ C, then f (ϕ) also contains 2A[δ]2

∗
Cχ, [δ]2∗Cχ,

nf (PRE(δ)), and nf ([δ]χ).

The proofs of these will appear in Section 5.2 just below. The proofs are technical, and
so the reader not interested in those details might wish to omit the next section on a first
reading of this paper. We shall use Lemmas 5.2–5.4 in the work on completeness below, but
neither the details of the proofs nor the other results of Section 5.2 will be used in the rest
of this paper.

5.2. Proofs of the Main Facts on Normal Forms and the Well-Order <

We turn to the proofs of Lemmas 5.2–5.4, just above. Our proofs are complicated and
circuitous, so there might be shorter arguments. For example, we do not know of any
proofs that avoid term rewriting theory. For the record, here are some of the reasons why
we feel that the study of our system is complicated:

1. The original statement of axioms such as the action-knowledge axiom is in terms of
actions of the form [σi~ψ].

2. On the other hand, the action rule is best stated in terms of actions which are composi-
tions of the actions [σi~ψ]. In a term-rewriting setting, this point and the previous one
work against each other. Our work will be to work with the versions of the axioms
that are generalized to the case of all simple actions.

3. Again mentioning term rewriting, we will need to pick an orientation for the com-
position axiom. This will either be [α][β]ϕ ; [α; β]ϕ, or [α; β]ϕ ; [α][β]ϕ 6. Both
alternatives lead to difficulties at various points. We chose the first alternative, and for
this reason, we will need a formulation of the Action-Knowledge Axiom as an infinite
scheme.

4. Our language has the program union operator t, but because the axioms are not, in
general, sound for sums, we need to reformulate things to avoid t.
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It is convenient to replace L1(Σ) by a slightly different language which we call L+1 (Σ).
This new language is shown in Figure 4. For the purposes of this section, we stress the
formulation of this as an algebra for a two-sorted signature. Starting with some fixed
action signature Σ, we construct a two-sorted signature ∆ = ∆(Σ) of terms, obtained in the
following way. Let n be the number of simple actions in Σ.

1. ∆ has two sorts: s (for sentences) and a (for actions).
2. Each p ∈ AtSen is a constant symbol of sort s.
3. ¬, 2A, and 2∗B are function symbols of type s→ s.
4. ∧ and→ are binary function symbols of type s× s→ s.
5. Each σ ∈ Σ is a function symbol of sort sn → a.
6. ; is function symbols of sort a× a→ a.
7. app is a binary symbol of type a× s→ s.
8. PRE is a function symbol of sort a→ s.

sentences ϕ pi ¬ϕ ϕ ∧ ψ ϕ→ ψ 2A ϕ 2∗Bϕ [α]ϕ PRE(α)
actions α σψ1, . . . , ψn α; β

Figure 4. The language L+1 (Σ).

The most important addition here is that we have PRE as a first-class part of the syntax;
previously, it had been an abbreviation. We also add the implication symbol→, but this is
only for convenience. Obviously,→may be dropped from the system. On the other hand,
we dropped t (as we mentioned, some axioms are not sound as equations in general if we
have t). We might as well drop skip as well since it, too, can be translated away.

Incidentally, the fact that PRE is not a symbol of L1(Σ) makes the issue of translating
between L1(Σ) and L+1 (Σ) delicate. The reader might wish to formulate a careful transla-
tion in order to appreciate some of the features of our ordering < which we shall introduce
in due course.

We adopt the usual notational conventions that ∧,↔, and ;, are used as infix symbols.
We continue our practice of writing σi~ψ for what technically would be σ1(ψ1, . . . , ψn). Also,
we write [α]ψ instead of app(α, ψ).

When dealing with L+1 (Σ), we let α, β, etc., range over terms of sort a, and ϕ, ψ, χ,
etc., range over terms of sort s. Finally, we use letters such as t and u for terms of either
sort (so as to shorten many of our statements). We also will need to adjoin new variables to
our signature in order to formulate the notion of substitution that leads to a term rewriting
system. For this, we let Xa and Xs be sets of new symbols. In order to simplify our notation,
we will use letters such as x, y, and z to range over both of these sets. That is, we will not
notationally distinguish the two sorts of variables. The context will always make it clear
what the sort of any given variable is.

Let L+1 (Σ, X) be the terms built from our signature which now may contain the
variables from X. Examples of such terms may be found in Figure 5.

(r1) x → y ; ¬(x ∧ ¬y)
(r2) PRE(σiy1 · · · yn) ; yi
(r3) PRE(x; y) ; PRE(x) ∧ [x]PRE(y)
(r4) [x]p ; PRE(x)→ p
(r5) [x]¬y ; PRE(x)→ ¬[x]y
(r6) [x](y ∧ z) ; [x]y ∧ [x]z
(r7α) [α]2Ax ; PRE(α)→ ∧{2A[β]x : α→A β}
(r8) [x][y]z ; [x; y]z
(r9) x; (y; z) ; (x; y); z

Figure 5. The rewrite systemR
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Lemma 5.5. Let ϕ be a sentence of L1(Σ). Then there is some ϕ† ∈ L1(Σ) which does not contain
t, crash or skip such that ` ϕ↔ ϕ†.

Proof. (J. Sack, personal communication) We define ϕ 7→ ϕ† as follows:

true† = true

p†
i = pi

(¬ϕ)† = ¬ϕ†

(ϕ ∧ ψ)† = ϕ† ∧ ψ†

(2A ϕ)† = 2A ϕ†

(2∗Bϕ)† = 2∗Bϕ†

([skip]ϕ)† = ϕ†

([crash]ϕ)† = true

([σiψ1 · · ·ψn]ϕ)† = [σiψ
†
1 · · ·ψ†

n]ϕ
†

([π t ρ]ϕ)† = ([π]ϕ)† ∧ ([ρ]ϕ)†

([π; ρ]ϕ)† = ([π][ρ]ϕ)†

The definition is by recursion on the number k of composition symbols (;) in ϕ. For a fixed
k, we then use recursion on the total number of symbols. The overall recursion allows us
to define ([π; ρ]ϕ)† to be ([π][ρ]ϕ)†. And the ’inside’ recursion on the number of symbols
allows us to define ([π t ρ]ϕ)† in terms of ([π]ϕ)† and ([ρ]ϕ)†.

We indicate two of the verifications that our definition works. Here are the details for
the line involving ([σiψ1 · · ·ψn]ϕ)† . Assuming the relevant induction hypotheses, we see
that σiψ1 · · ·ψn ≡ σiψ

†
1 · · ·ψ†

n (see Lemma 4.20, part 2). And then by Lemma 4.22,

[σiψ1 · · ·ψn]ϕ ≡ [σiψ
†
1 · · ·ψ†

n]ϕ.

Using necessitation, we also have equivalence to [σiψ
†
1 · · ·ψ†

n]ϕ
†.

Some of the other cases use necessitation in this way also. In all cases, the verifications
are similar.

Remark 5.6. In the remainder of this paper, we shall assume that sentences and actions of
L1(Σ) do not contain t, crash or skip. We also regard them as ground terms of L+1 (Σ): these
are terms without variables.

Incidentally, the proof of Lemma 5.5 shows that ; is also eliminable. However, we shall
not assume that ; is not found in our sentences. In fact, the rewriting system R that we
present shortly will introduce compositions.

5.2.1. The Rewriting SystemR and Its Interpretation

We recall here the general notion of term rewriting as it applies to L+1 (Σ, X). For more
on this topic, especially on the notion of termination, see, e.g., Dershowitz [16]. Consider a
rewrite rule (r) of the form l ; r, where l and r are elements of L+1 (Σ, X). This (r) generates
a relation of immediate rewriting on L+1 (Σ, X): we say that t1 rewrites to t2 via (r) if there is a
term u with exactly one occurrence of a variable x (of either sort) and a substitution σ such
that u(x ← lσ) = t1 and u(x ← rσ) = t2. That is, t1 and t2 result from u by substituting
l and r in for x; however, we need not use l and r literally, but we could as well take a
substitution instance of them. We would write t1→r t2 for this.

Given a setR of rewrite rules, we write t1→R t2 if for some r ∈ R, t1→r t2. We naturally
consider the transitive closure −→R∗ of→R . We say that t1 rewrites to t2 viaR if they stand in
this relation −→R∗ .

We are mostly interested in the rewriting of ground terms. But we need the notion of
variables to formulate this, and this is the only reason for introducing variables.

Now that we have made this preliminary discussion, we consider the term rewriting
systemR shown in Figure 5. We have numbered the rules, and we use this numbering in
the sequel.

Remark 5.7. (r7α) is an infinite scheme, and, in it, α is a term of sort a. But α need not
be an action variable. (Indeed, the scheme is only interesting when α is a composition of
actions of the form σi~ψ.) The right side of (r7α) depends on α, and this is why we use a
scheme rather than a single rule. We need to explain what it means. First, the action terms
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of L+1 (Σ, X) carry the structure of a frame by taking for each A the smallest relation →A
such that the following two conditions hold:

1. If i→A j in Σ, then σi~ψ→A σj~ψ.
2. If α→A α′ and β→A β′, then α; α′→A β; β′.

Moreover, we use the notation
∧{2A[β]ϕ : α→A β} to stand for some fixed, but arbitrary,

rendering of the conjunction as a nested list of binary conjuncts. The order will not matter,
but we shall need an estimate of how many conjuncts there are.

We have a length function ` on action terms: `(x) = 0 for variables x, `(σi~ψ) = 1, and
`(α; β) = `(α) + `(β). For each α, the number of β such that α→A β is at most n`(α), where n is
the size of Σ. This is easy to check by induction on `(α).

Also on (r7α): one is tempted to replace this infinite scheme by the finite one

(r10) [σi~ψ]2A ϕ ; ψi →
∧{2A[σj~ψ]ϕ : i→A j}

If one did this, one would have to reverse (r8) to read

(r11) [α; β]ϕ ; [α][β]ϕ

The reason is that (r10), above, only allows us to reduce expressions [α]2A ϕ when α is of the form
σi~ψ. The problem is that the normal forms of (r1)–(r6) + (r9) + (r10) + (r11) would include terms
such as

[σ1
~ψ1][σ2

~ψ2] · · · [σk
~ψk]2∗Cϕ,

and these are not suitable for use in connection with the action rule. We will show about our system
(r1)–(r9) that its normal forms includes terms such as

[(· · · (σ1
~ψ1; σ2

~ψ2) · · · σk
~ψk)]2∗Cϕ.

Again, this is mainly due to our choice in the direction of (r8).

5.2.2. Our Interpretation

An interpretation of a signature ∆ is a ∆ algebra. This is a carrier set for the sentences, a
carrier set for the actions, and for each n-ary function symbol f of ∆ a function of the appro-
priate sort. In our setting, both carrier sets will be N≥3, the set of natural numbers which
are at least 3. We shall use a, b, etc., to range over N≥3 in this section. Our interpretation is
shown in Figure 6. By recursion on terms t(x1, . . . , xk), we build an interpretation 7.

[[t]](a1, . . . , ak) : (N≥3)
k → N≥3.

The interpretation of each function symbol is strictly monotone in each argument. (For
example, we check this for [[; ]]. For fixed n and m, we consider the functions λa.na+2

and λa.am+2. Then, if a < b, na+2 < nb+2 and am+2 < bm+2.) So, by induction, each
[[t]](a1, . . . , ak) is strictly monotone as a function in each argument.

[[pi]] = 3
[[¬]](a) = a + 1
[[∧]](a, b) = a + b
[[→]](a, b) = a + b + 3
[[2A]](a) = a + 2

[[2∗B ]](a) = a + 1
[[app]](a, b) = ab

[[PRE]](a) = a
[[σi]](a1, . . . , an) = a1 + · · ·+ an + 1
[[; ]](a, b) = ab+1

Figure 6. The interpretation.

Lemma 5.8. Let n = |Σ|. For all action terms α, and all maps ι of variables to N≥3,

[[α]](ι(x1), . . . , ι(xn)) > nl(α).
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Proof. By induction on α. If α is a variable x, then `(α) = 0. So [[α]](ι(x)) = ι(x) ≥ 3 > 1 =
n`(α). If α is a term of the form σi~ψ, then `(α) = 1, and

[[σiψ1 · · ·ψn]](ι(x1), . . . , ι(xn)) = [[ψ1]](ι(x1), . . . , ι(xn)) + · · ·+ [[ψn]](ι(x1), . . . , ι(xn))
> 3n
> n`(α)

Now assume our lemma for α and β.

[[α; β]](ι(x1), . . . , ι(xn)) = ([[α]](ι(x1), . . . , ι(xn)))[[β]](ι(x1),...,ι(xn))+1

> n`(α);(n`(β)+1)

> n`(α)+`(β) see below
= n`(α;β)

In asserting that `(α); n`(β) > `(α) + `(β), we assume that n > 1. If n = 1, then our lemma
is trivial.

Proposition 5.9. If α is an action term of L+1 (Σ) and α→A β, then [[α]] and [[β]] are the same
function. In particular, if α and β are ground action terms, then [[α]] = [[β]].

Proof. By induction on α. The point is that the interpretation of the actions σi~ψ does not
use the number i in any way. The rest follows by an easy induction.

The following proposition is a technical but elementary result on exponentiation. It
will be used in Lemma 5.11, below. One might notice that if we replace 3 by 2 in the
statement, then some of the parts are no longer true. This is the reason why our overall
interpretation uses N≥3 rather than N or N≥2.

Proposition 5.10. Let a, b, c ≥ 3.

1. 2ab > a + 4.
2. ab+c > ab + ac.
3. a2 > a + 5.
4. ab+1 > 3a + 3.
5. ab > (a + 1)(b + 1).

Lemma 5.11. For each of (r1)–(r9), the interpretation of the left side of the rule is strictly larger
than the right side on all tuples of arguments in N≥3.

Proof. We remind the reader that letters a, b, c, etc., denote elements of N≥3. We use
Proposition 5.10 without explicit mention.

(r1) [[x → y]](a, b) = a + b + 3 > a + b + 2 = [[¬(x ∧ ¬y)]](a, b).
(r2) [[PRE(σi~y)]](a1, . . . , an) = [[σi~y]](a1, . . . , an) ≥ ai + 1 > [[yi]](a1, . . . , an).
(r3)

[[PRE(x; y)]](a, b) = ab+1

> a + ab

= [[PRE(x)]](a, b) + [[[x]PRE(y)]](a, b)
= [[PRE(x) ∧ [x]PRE(y)]](a, b)

(r4) [[[x]p]](a) = a2 > a + 5 = [[PRE(x)→ p]](a).
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(r5)
[[[x]¬y]](a, b) = ab+1

≥ ab + 2ab

> a + ab + 4
= a + [[[x]y]](a, b) + 4
= [[PRE(x)→ ¬[x]y]](a, b)

(r6) [[[x](y ∧ z)]](a, b, c) = ab+c > ab + ac = [[[x]y ∧ [x]z]](a, b, c).
(r7α) Let y1, . . . , yn be the free variables of α. Fix c1, . . . , cn ∈ N≥3. Let a = [[α]](c1, . . . , cn),

and let b ∈ N≥3 be arbitrary. Then

[[[α]2Ax]](c1, . . . , cn, b) = ab+2

> ab+1 + ab+1

> ab+1 + 3a + 3
= a + a(2 + ab) + 3
> a + n`(a)(2 + ab) + 3
≥ [[PRE(α)→ ∧{2A[β]x : α→A β}]](c1, . . . , cn, b)

Notice that we used Proposition 5.9 and our observation that the size of the conjunction on
the right side of (r7α) is at most n`(α).

(r8) [[[x][y]z]](a, b, c) = abc
> a(b+1)c = (ab+1)c = [[[x; y]z]](a, b, c).

(r9) [[x; (y; z)]](a, b, c) = abc+1+1 > a(b+1)(c+1) = (ab+1)c+1 = [[(x; y); z]](a, b, c).

Definition 5.12. Let ϕ and ψ be sentences in L1(Σ). We regard these as ground terms in
L+1 (Σ). We write ϕ > ψ if [[ϕ]] > [[ψ]], where our interpretation is the one in Figure 6. We
write ϕ < ψ if ϕ ≤ ψ to mean the obvious things.

Theorem 5.13. R is terminating: there are no infinite sequences

t1 →R t2 →R · · · →R tn →R tn+1 · · ·

Proof. We recall a standard argument. Assume we had a counter example, an infinite
sequence of rewrites. We may assume without loss of generality that each ti is a ground
term. Recall Lemma 5.11 and our observation that each [[t]](x1, . . . , xk) is strictly monotone
as a function in each argument. From this, it follows that [[t1]] > [[t2]] > · · · , and these are
all numbers. So we have a contradiction.

5.2.3. Normal Forms

We remind the reader that we formulated the notions of equivalences of simple actions
and also equivalence of sentences of L1(Σ) in Section 4.3. We consider now a translation
trans : L+1 (Σ)→ L1(Σ). The definition is by recursion on the well-order <. We take trans
to be a homomorphism for all symbols except PRE. For this, we require the following:

trans(PRE(σiψ1, . . . , ψn)) = trans(ψi)
trans(PRE(α; β)) = 〈trans(α)〉trans(PRE(β))

= ¬[trans(α)]¬trans(PRE(β))

The reason we need recursion on < is that trans(PRE(β)) figures in trans(PRE(α; β)). So we
need to know that PRE(β) < PRE(α; β). Of course, we do not really need the specific <
that we constructed for this; for this minor point, we might as well define ϕ < ψ if ϕ has
fewer symbols than ψ.

Lemma 5.14. For all action terms α, trans(PRE(α)) = PRE(trans(α)).
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Proof. By induction on <. The important thing again is that when we write PRE(trans(α))
we are using PRE here as a defined symbol. Its recursion equations match the definition of
trans.

Lemma 5.15. Let α be a ground action term of L+1 (Σ). Then,

{trans(β) : α→A β in L+1 (Σ)} = {β : trans(α)→A β in L1(Σ)}.

Proof. By induction on α.

Lemma 5.16. If t1 and t2 are ground terms of L+1 (Σ) such that t1→R t2, then trans(t1) ≡
trans(t2).

Proof. Let u be a term with exactly one free variable x, and let σ be such that for some i,
t1 = u(x ← lσ) and t2 = u(x ← rσ). We argue by induction on u. If u is just x, then we
examine the rules of the system. All of them pertain to sentences except for (r9), and in the
case of (r9) we use Lemma 4.20, part (4). The arguments for the other rules use Lemma 5.14,
and we will give the details for two of them, (r3) and (r7).

For (r3),

trans(PRE(α; β)) ≡ 〈trans(α)〉trans(PRE(β)) definition of trans
≡ PRE(trans(α)) ∧ [trans(α)trans(PRE(β)) by Lemma 4.16
≡ trans(PRE(α)) ∧ [trans(α)]trans(PRE(β)) using Lemma 5.14
≡ trans(PRE(α) ∧ [α]PRE(β))

The infinite scheme (r7α) is repeated below:

(r7α) [α]2Ax ; PRE(α)→
∧
{2A[β]x : α→A β}.

Recall that α might have variables. What we need to check here is that ground instances of
(r7α) have equivalent translations. So take a ground sentence of the form [α]2A ϕ. Its trans-
lation is [trans(α)]2A(trans(ϕ)). Using the Action-Knowledge Axiom and Lemmas 5.15
and 5.14:

[trans(α)]2A(trans(ϕ)) ≡ PRE(trans(α))→ 2A
∧{[β]trans(ϕ) : trans(α)→A β}

≡ trans(PRE(α))→ ∧{2A[trans(β)]trans(ϕ) : α→A β})

≡ trans

(
PRE(α)→ ∧{2A[β]ϕ : α→A β}

)
This settles all of the cases in this lemma when u is a variable by itself. In the general

case, we need a fact about substitutions. Let t be any term of L+(Σ, X). Let σ and τ be two
ground substitutions (these are substitutions all of whose values contain no variables) such
that trans(σ(x)) and trans(τ(x)) are equivalent (actions or sentences) for all variables x.
Then, trans(tσ) and trans(tτ) are again equivalent. The argument here is an easy induction
on terms of L+(Σ, X). It amounts to several facts which we have seen before: ≡ is a
congruence for all of the syntactic operations on sentences, and also for those on programs
(see Lemma 4.20); equivalent actions have equivalent preconditions (by definition); and if
α ≡ β, then [α]ϕ ≡ [β]ϕ (Lemma 4.22).

A normal form in a rewriting system is a term which cannot be rewritten in the system.
In a terminating system such as our R, one may define a normal form for a term by
rewriting as much as possible in some fixed way (for example, by always rewriting in the
leftmost possible way). We shall need some information on the normal forms ofR, and we
shall turn to this shortly.

Near the beginning of Section 5, we defined a setNF ⊆ L1(Σ). NF is the smallest set
containing the atomic propositions and closed under all the boolean and modal operators;
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with the property that if α and ϕ belong to NF , then so does [α]2∗Cϕ for all C ⊆ A; and,
finally, that the programs built from sentences in NF are themselves in NF (see also (14)
for a more complete description of this last closure condition.)

Lemma 5.17. A ground term t ∈ L+1 (Σ) is a normal form of R if t ∈ NF . In particular, PRE

and→ do not occur in normal forms.

Proof. An induction on NF ⊆ L1(Σ) shows that all sentences in NF are ground terms of
L+1 (Σ) and are, moreover, normal forms of the rewriting systemR: no rules ofR can apply
at any point. Going the other way, we show by induction on L+1 (Σ) that if t is a (ground)
normal form, then (regarding t as a sentence or action in L1(Σ)) ϕ ∈ NF . The base case
and the induction steps for ¬, ∧, 2A, and 2∗B are all easy. Suppose our result holds for ϕ,
and consider a normal form [α]ϕ. Then, α must be an action of the form [σi~ψ] with all ψj in
normal form; if not, some rule would apply to α and, hence, to [α]ϕ. We are left to consider
an action α. By induction hypothesis, the subsentences of α, too, are normal forms and,
hence, belong toNF . We claim that α must be of the right-branching form in Equation (14).
This is because all of the other possibilities are reducible in the system using (r9).

Lemma 5.18. A sentence ϕ ∈ L0(Σ) is a normal form of R if ϕ is a modal sentence (that is, if ϕ
contains no actions).

Proof. By the easy part of Lemma 5.17, the modal sentences are normal forms. In the more
significant direction, one first checks by induction on rewrite sequences that if ϕ ∈ L0(Σ)
and ϕ′ is reachable from ϕ by a finite number of rewrites inR, then 2∗ does not appear in
ϕ′. So every normal form of ϕ is a purely modal sentence. It follows that if ϕ were a normal
form to begin with, then ϕ would be a modal sentence.

Corollary 5.19. For every ϕ ∈ L1(Σ), there is a normal form nf (ϕ) such that ` ϕ ↔ nf (ϕ).
Moreover, nf (ϕ) ≤ ϕ.

Proof. Regard ϕ as a term in L+1 (Σ). Let

ϕ = ϕ1 ; ϕ2 ; · · ·; ϕn = nf (ϕ)

be some sequence of rewrites which leads to a normal form of ϕ 8. By Lemma 5.16,
` trans(ϕ)↔ trans(nf (ϕ)). But neither ϕ nor nf (ϕ) contain PRE or→, so they are literally
equal to their translations. Thus, ` ϕ↔ nf (ϕ), just as desired.

Lemma 5.20. For all ϕ and α of L+1 (Σ):
1. PRE(α) < [α]ϕ.
2. If α→A β, then [β]ϕ < ¬[β]ϕ < [α]2∗Cϕ.
3. If [α]2∗Cψ is a normal form sentence and α→A β, then 2A[β]2

∗
Cψ and [β]2∗Cψ are again

normal forms.
4. Every subterm of a normal form is a normal form.
5. If α is a normal-form action and α→A β, then β is a normal-form action as well.

Proof. Part (1) is an easy calculation. In part (2), we use the fact that [[α]] and [[β]] are the
same number, by Proposition 5.9. We use the fact here (and here only) that [[2∗]](a) = a + 1
rather than [[2∗]](a) = a. The remaining parts are also easy using the characterization of
normal forms of Lemma 5.17.
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5.2.4. The Function f (ϕ)

The last piece of business in this section is to define the function f (ϕ) from Lemma 5.4
and then to prove the required properties.

Definition 5.21. For t, an action or a sentence, let s(t) be the set of subsentences of t,
including t itself (if t is a sentence). This includes all sentences occurring in actions which
occur in ϕ and their subsentences. We define a function f : NF → P(NF ) by recursion
on the well-founded relation < as follows:

f (p) = {p}
f (¬ϕ) = f (ϕ) ∪ {¬ϕ}
f (ϕ ∧ ψ) = f (ϕ) ∪ f (ψ) ∪ {ϕ ∧ ψ}
f (2A ϕ) = f (ϕ) ∪ {2A ϕ}
f (2∗Bϕ) = f (ϕ) ∪ {2∗Bϕ} ∪ {2A2

∗
Bϕ : A ∈ B}

f ([α]2∗Cϕ) =
⋃ {s(2A[β]2

∗
Cϕ) : α−→C∗ β & A ∈ C}

∪ ⋃{ f (ψ) : (∃β)α−→C∗ β & ψ ∈ s(β)}
∪ ⋃{ f (nf (PRE(β))) : α−→C∗ β}
∪ f (2∗Cϕ)
∪ ⋃{ f (nf ([β]ϕ)) : α−→C∗ β}

The definition makes sense because the calls to f on the right-hand sides are all smaller
than the arguments on the left-hand sides; see Lemma 5.20.)

Lemma 5.22. For all ϕ ∈ NF :

1. ϕ ∈ f (ϕ).
2. f (ϕ) is a finite set of normal form sentences.
3. If ψ ∈ f (ϕ), then s(ψ) ⊆ f (ϕ).
4. If ψ ∈ f (ϕ), then f (ψ) ⊆ f (ϕ).
5. If [γ]2∗Cχ ∈ f (ϕ), γ−→C∗ δ, and A ∈ C, then f (ϕ) also contains 2A[δ]2

∗
Cχ, [δ]2∗Cχ,

nf (PRE(δ)), and nf ([δ]χ).

Proof. Part (1) is by cases on ϕ. The only interesting case is for [α]2∗Cϕ, and this is a
subsentence of 2A[α]2

∗
Cϕ for any A ∈ C.

All of other the parts are by induction on ϕ in the well-ordered <. For part (2), we use
Lemma 5.20.

In part (3), we argue by induction on normal forms.
The result is immediate when ϕ is an atomic sentence p, and the induction steps for ¬,

∧, and 2A are easy. For 2∗Bϕ, note that since ϕ < 2∗Bϕ, our induction hypothesis implies
the result for ϕ; we verify it for 2∗Bϕ. When ψ is 2∗Bϕ, then

s(ψ) = s(ϕ) ∪ {2∗Bϕ} ⊆ f (ϕ) ∪ {2∗Bϕ} ⊆ f (2∗Bϕ).

And then, when ψ is 2A2
∗
Bϕ for some A ∈ B, we have

s(ψ) = s(2∗Bϕ) ∪ {2A2
∗
Bϕ} ⊆ f (2∗Bϕ).

To complete part (3), we consider [α]2∗Cϕ. If there is some χ < [α]2∗Cϕ such that ψ ∈ f (χ)
and f (χ) ⊆ f ([α]2∗Cϕ), then we argue as follows: by induction hypothesis, s(ψ) ⊆ f (χ);
and by hypothesis f (χ) ⊆ f ([α]2∗Cϕ). This covers all of the cases except for ψ a subsentence
of 2A[β]2

∗
Cϕ. And here, s(ψ) ⊆ s(2A[β]2

∗
Cϕ) ⊆ f ([α]2∗Cϕ).

In Part (4), we again argue by induction on normal forms. The result is immediate
when ϕ is an atomic sentence p. The induction steps for ¬, ∧, and 2A are easy. For 2∗Bϕ,
note that since ϕ < 2∗Bϕ, our induction hypothesis implies the result for ϕ; we verify it for
2∗Bϕ. The only interesting case is when ψ is 2A2

∗
Bϕ for some A ∈ B. And in this case

f (ψ) = f (2∗Bϕ) ∪ {2A2
∗
Bϕ} ⊆ f (2∗Bϕ).
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To complete part (4), we consider [α]2∗Cϕ. If there is some χ < [α]2∗Cϕ such that ψ ∈ f (χ)
and f (χ) ⊆ f ([α]2∗Cϕ), then we are easily done by the induction hypothesis. This covers all
of the cases except for ψ of the form [β]2∗Cϕ or of the form 2A[β]2

∗
Cϕ. (If ψ is a subsentence

of some β, then f (ψ) ⊆ f ([α]2∗Cϕ) directly. If ψ is a subsentence of 2∗Cϕ, then by induction
hypothesis, f (ψ) ⊆ f (2∗Cϕ); and directly, f (2∗Cϕ) ⊆ f ([α]2∗Cϕ).) For [β]2∗Cϕ, we use the
transitivity of −→C∗ to check that f ([β]2∗Cϕ) ⊆ f ([α]2∗Cϕ). And now the case of 2A[β]2

∗
Cϕ

follows:

f (2A[β]2
∗
Cϕ) = f ([β]2∗Cϕ) ∪ {2A[β]2

∗
Cϕ} ⊆ f ([α]2∗Cϕ).

For part (5), assume that [γ]2∗Cχ ∈ f (ϕ). By part (2), [γ]2∗Cχ is a normal form.
The definition of f implies that 2A[δ]2

∗
Cχ, [δ]2∗Cχ, nf (PRE(δ)), and nf ([δ]χ) all belong to

f ([γ]2∗Cχ), and then part (4) tells us that f ([γ]2∗Cχ) ⊆ f (ϕ).

5.2.5. Summary

The purpose of this section was to prove Lemmas 5.2–5.4 in Section 5. Lemma 5.2
is Corollary 5.19. Lemma 5.3 comes from Corollary 5.19 and Lemma 5.20. Lemma 5.4 is
contained in Lemma 5.22.

5.3. Strong Completeness for L0(Σ)

Recall that in the languages L0(Σ), we do not have the common-knowledge operators
2∗B or the action iterations π∗. At this point, we can put together several results from our
previous work to obtain a completeness theorem for languages of the form L0(Σ). The
overall ideas are: (1) we need a logical system which is strong enough to translate each
sentence of L0(Σ) to a normal form; (2) this normal form will be a purely modal sentence;
and (3) the system should be at least as strong as multimodal K.

Proposition 5.23. Every sentence ϕ of L0(Σ) is provably equivalent to a sentence ϕ∗ in which
there are no occurrences of t, crash, ;, or skip.

Theorem 5.24. The logical system for L0(Σ) is strongly complete: for all sets T ⊆ L0(Σ), T ` ϕ
iff T |= ϕ.

Proof. The soundness half being easy, we only need to show that if T |= ϕ, then T ` ϕ.
First, we may assume that the symbols t, crash, ;, and skip do not occur in T or ϕ.

Thus, we may work with L0(Σ) ∩ L+1 (Σ). In particular, we have normal forms.
Next, for each χ of L0(Σ), ` χ↔ nf (χ). As a result, T ` nf (χ) for all χ ∈ T.
Finally, write nf (T) for {nf (χ) : χ ∈ T}. By soundness, nf (T) |= nf (ϕ). Since our

system extends the standard complete proof system of modal logic, nf (T) ` nf (ϕ). So
T ` nf (ϕ). As we know, ` ϕ↔ nf (ϕ). So we have our desired conclusion: T ` ϕ.

5.4. Weak Completeness for L1(Σ)

The proof of completeness and decidability ofL1(Σ) is based on the filtration argument
for completeness of PDL due to Kozen and Parikh [15]. We show that every consistent ϕ
has a finite model, and that the size of the model is recursive in ϕ. As in the last section, we
depend on the results of Lemmas 5.2–5.4.

The Set ∆ = ∆(ϕ)

Fix a sentence ϕ. We set ∆ = f (ϕ) (i.e., we drop ϕ from the notation). This set ∆
is the version for our logic of the Fischer–Ladner closure of ϕ, originating in [17]. Let
∆ = {ψ1, . . . , ψn}. Given a maximal consistent set U of L1(Σ), let

U∗ = +ψ1 ∧ · · · ∧+ψn,
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where the signs are taken in accordance with membership in U. That is, if ψi ∈ U, then ψ is
a conjunct of U∗; but if ψi /∈ U, then ¬ψi is a conjunct.

Two (standard) observations are in order. Notice that if U∗ 6= V∗, then U∗ ∧ V∗ is
inconsistent. Also, for all ψ ∈ ∆,

` ψ↔
∨
{W∗ : W is maximal consistent and ψ ∈W}. (15)

and
` ¬ψ↔

∨
{W∗ : W is maximal consistent and ¬ψ ∈W}. (16)

(The reason is that ψ is equivalent to the disjunction of all complete conjunctions which
contain it. However, some of those complete conjunctions are inconsistent and these can be
dropped from the big disjunction. The others are consistent and, hence, can be extended to
maximal consistent sets.)

Definition 5.25. We consider maximal consistent sets U in the logic for L1(Σ). Let U ≡ V if
U∗ = V∗ (if U ∩∆ = V ∩∆). The filtration F is the model whose worlds are the equivalence
classes [U] in this relation. Furthermore, we set

[U]→A [V] in F iff whenever 2Aψ ∈ U ∩ ∆, then also ψ ∈ V. (17)

We complete the specification of a state model with the valuation:

‖p‖F = {[U] : p ∈ U ∩ ∆}. (18)

The definitions in Equations (18) and (17) are independent of the choice of representa-
tives: we use part (1) of Lemma 5.4 to see that if 2Aχ ∈ ∆, then also χ ∈ ∆.

Proposition 5.26. If U∗ ∧3AV∗ is consistent, then [U]→A [V].

Proof. Assume 2Aψ ∈ U ∩ ∆ and toward a contradiction that ψ 6∈ V. Since ψ ∈ ∆ and
¬ψ ∈ V, we have ` V∗ → ¬ψ. Thus, ` 3AV∗ → 3A¬ψ, and so ` U∗ ∧ 3AV∗ →
2Aψ ∧3A¬ψ. Hence U∗ ∧3AV∗ is inconsistent.

Definition 5.27. Let 〈α〉3∗Cψ be a normal form. A good path from [V0] for 〈α〉3∗Cψ is a path in
F

[V0] →A1 [V1] →A2 · · · →Ak−1 [Vk−1] →Ak [Vk] (19)

such that k ≥ 0, each Ai ∈ C, and such that there exist actions

α = α0 →A1 α1 →A2 · · · →Ak−1 αk−1 →Ak αk

such that PRE(αi) ∈ Vi for all 0 ≤ i ≤ k, and 〈αk〉ψ ∈ Vk.
The idea behind a good path comes from considering Lemma 4.11 in F . Of course, the

special case of that result would require that 〈F , [Vi]〉 |= PRE(αi) rather than PRE(αi) ∈ Vi,
and similarly for 〈αk〉ψ and Vk. The exact formulation above was made in order that the
Truth Lemma will go through for sentences of the form 〈α〉3∗Cψ (see the final paragraphs of
the proof of Lemma 5.30).

Lemma 5.28. Let [α]2∗Cψ ∈ ∆. If there is a good path from [V0] for 〈α〉3∗C¬ψ, then 〈α〉3∗C¬ψ ∈
V0.

Proof. By induction on the length k of the path. If k = 0, then 〈α〉¬ψ ∈ V0. If 〈α〉3∗C¬ψ /∈ V0,
then [α]2∗Cψ ∈ V0. By Lemma 5.4, part (2), we have nf ([α]ψ) ∈ V0. This is a contradiction.

Assume the result for k, and suppose that there is a good path from [V0] for 〈α〉3∗C¬ψ
of length k + 1. We adopt the notation from (19) for this good path. Then there is a good
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path of length k from [V1] for 〈α1〉3∗C¬ψ. Also, [α1]2
∗
Cψ ∈ ∆, by Lemma 5.4, part (2). By

induction hypothesis, 〈α1〉3∗C¬ψ ∈ V1.
If 〈α〉3∗C¬ψ /∈ V0, then [α]2∗Cψ ∈ V0. V0 contains [α]2∗Cψ ∧ nf (PRE(α))→ 2A[α1]2

∗
Cψ.

(That is, this sentence is valid by Lemma 4.21, part (2). Hence, it belongs to every maximal
consistent set.) So V0 contains 2A[α1]2

∗
Cψ. This sentence belongs to ∆ by Lemma 5.4, part

(2). Now by definition of →A in F , we see that [α1]2
∗
Cψ ∈ V1. This is a contradiction to our

observation at the end of the previous paragraph.

Lemma 5.29. If V0
∗ ∧ 〈α〉3∗Cψ is consistent, then there is a good path from [V0] for 〈α〉3∗Cψ.

Proof. For each β such that α−→C∗ β, let Sβ be the (finite) set of all [W] ∈ F such that there
is no good path from [W] for 〈β〉3∗Cψ. We need to see that [V0] /∈ Sα; suppose toward a
contradiction that [V0] ∈ Sα. Let

χβ =
∨
{W∗ : W ∈ Sβ}.

Note that ¬χβ is logically equivalent to
∨{X∗ : [X] ∈ F and X /∈ Sβ}. Since we assumed

[V0] ∈ Sα, we have ` V0
∗ → χα.

We first claim for β such that α−→C∗ β, χβ ∧ 〈β〉ψ is inconsistent. Otherwise, there
would be [W] ∈ Sβ such that χβ ∧ 〈β〉ψ ∈W. Note that, by the partial-functionality axiom,
` 〈β〉ψ → PRE(β). But then the one-point path [W] is a good path from [W] for 〈β〉3∗Cψ.
Thus, [W] /∈ Sβ, and this is a contradiction. So indeed, χβ ∧ 〈β〉ψ is inconsistent. Therefore,
` χβ → [β]¬ψ.

We next show that for all A ∈ C and all β such that β →A γ, χβ ∧ PRE(β) ∧3A¬χγ

is inconsistent. Otherwise, there would be [W] ∈ Sβ with χβ, PRE(β), and 3A¬χγ in it.
Then,

∨{3AX∗ : X 6∈ Sγ}, being equivalent to 3A¬χγ, would belong to W. It follows that
3AX∗ ∈ W for some [X] 6∈ Sγ. By Proposition 5.26, [W] →A [X]. Since [X] /∈ Sγ, there
is a good path from [X] for 〈γ〉3∗Cψ. But since β →A γ and W contains PRE(β), we also
have a good path from [W] for 〈β〉3∗Cψ. This again contradicts [W] ∈ Sβ. As a result, for all
relevant A, β, and γ, ` χβ ∧ PRE(β)→ 2Aχγ.

By the Action Rule, ` χα → [α]2∗C¬ψ. Now ` V0
∗ → χα. So ` V0

∗ → [α]2∗C¬ψ. This
contradicts the assumption with which we began this proof.

Lemma 5.30 (Truth Lemma). Consider a sentence ϕ, and also the set ∆ = f (ϕ). For all χ ∈ ∆
and [U] ∈ F : χ ∈ U if 〈F , [U]〉 |= χ.

Proof. We argue by induction on the well-founded < that if χ ∈ ∆, then: χ ∈ U if
〈F , [U]〉 |= χ. The case of χ atomic is trivial. Now assume this Truth Lemma for sentences
< χ. Recall that ∆ ⊆ NF , our set of normal forms (see Section 5.2.3). We argue by cases on
χ.

The cases that χ is either a negation or conjunction are trivial.
Suppose next that χ ≡ 2Aψ. Suppose 2Aψ ∈ U; we show 〈F , [U]〉 |= 2Aψ. Let

[V] be such that [U]→A [V]. Then by definition of →A , ψ ∈ V. The induction hypothesis
applies to ψ, since ψ < 2Aψ, and since ψ ∈ ∆ by Lemma 5.4, part (1). So by induction
hypothesis, 〈F , [V]〉 |= ψ. This gives half of our equivalence. Conversely, suppose that
〈F , [U]〉 |= 2Aψ. Suppose towards a contradiction that 3A¬ψ ∈ U. So U∗ ∧3A¬ψ is
consistent. We use Equation (16) and the fact that 3A distributes over disjunctions to
see that U∗ ∧ 3A¬ψ is logically equivalent to

∨
(U∗ ∧ 3AV∗), where the disjunction is

taken over all V which contain ¬ψ. Since U∗ ∧3A¬ψ is consistent, one of the disjuncts
U∗ ∧3AV∗ must be consistent. The induction hypothesis again applies, and we use it to see
that 〈F , [V]〉 |= ¬ψ. By Proposition 5.26, [U]→A [V]. We conclude that 〈F , [U]〉 |= 3A¬ψ,
and this is a contradiction.

For χ of the form 2∗Cψ, we use the standard argument for PDL (see Kozen and
Parikh [15]). This is based on lemmas that parallel Lemmas 5.28 and 5.29. The work
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is somewhat easier than what we do below for sentences of the form [α]2∗Cψ, and so we
omit these details.

We conclude with the case when χ is a normal form sentence of the form [α]2∗Cψ ∈ ∆.
Assume that [α]2∗Cψ ∈ ∆. First, suppose that [α]2∗Cψ /∈ U. Then, by Lemma 5.29, there
is a good path from [U] for 〈α〉3∗C¬ψ. We want to apply Lemma 4.11 in F to assert that
〈F , [U]〉 |= 〈α〉3∗C¬ψ. Let k be the length of the good path. For i ≤ k, PRE(αi) ∈ Ui.
Now each nf (PRE(αi)) belongs to ∆ by Lemma 5.4, part (2), and is < [α]2∗Cψ. So by
induction hypothesis, 〈F , [Ui]〉 |= nf (PRE(αi)). By soundness, 〈F , [Ui]〉 |= PRE(αi). We
also need to check that 〈F , [Uk]〉 |= 〈αk〉¬ψ. For this, recall from Lemma 5.3 that ∆
contains nf (¬[αk]ψ) ≤ ¬[αk]ψ < [α]2∗Cψ. Since the path is good, Uk contains 〈αk〉¬ψ;
thus, it contains ¬[αk]ψ; and, finally, it contains nf (¬[αk]ψ). By induction hypothesis,
〈F , [Uk]〉 |= nf (¬[αk]ψ). By soundness, 〈F , [Uk]〉 |= ¬[αk]ψ. Thus, 〈F , [Uk]〉 |= 〈αk〉¬ψ.
Now it does follow from Lemma 4.11 that 〈F , [U]〉 |= 〈α〉3∗C¬ψ.

Going the other way, suppose that 〈F , [U]〉 |= 〈α〉3∗C¬ψ. By Lemma 4.11, we obtain a
path in F witnessing this. The argument of the previous paragraph shows that this path is
a good path from [U] for 〈α〉3∗C¬ψ. By Lemma 5.28, U contains 〈α〉3∗C¬ψ. This completes
the proof.

Theorem 5.31. (Completeness). For all ϕ, ` ϕ if |= ϕ. Moreover, this relation is decidable.

Proof. By Lemma 5.2, ` ϕ ↔ nf (ϕ). Let ϕ be consistent. By the Truth Lemma, nf (ϕ)
holds at some world in the filtration F . So nf (ϕ) has a model; thus, ϕ has one, too. This
establishes completeness. For decidability, note that the size of the filtration is computable
in the size of the original ϕ. (Another proof of decidability: we show in Section 6.1 that
L1(Σ) can be translated into propositional dynamic logic (PDL) fairly directly, and that
logic is decidable. Neither argument gives a good estimate of the complexity.)

5.5. Extensions to the Completeness Theorem

We briefly mention extensions of the Completeness Theorem 5.31.
First, consider the case of S5 (or K45) actions. We change our logical system by

restricting to these S5 actions, and we add the S5 axioms to our logical system. We interpret
this new system on S5 models. It is easy to check that applying an S5 action to an S5 model
gives another S5 model. Further, the S5 actions are closed under composition. Finally, if α is
an S5 action and α→A β, then β also is an S5 action. These easily imply the soundness of the
new axioms. For completeness, we need only check that if we assume the S5 axioms, then
the filtration F from the previous section has the property that each →A is an equivalence
relation. This is a standard exercise in modal logic (see, e.g., Fagin et al. [18], Theorem
3.3.1).

Second, we also have completeness not only for the languages L1(Σ), but also for the
languages in [6] that are constructed from families S of action signatures. This construction
is most significant in the case when S is an infinite set of signatures; for example, S might
contain a copy of every finite signature. In that setting, the language L(S) would not be the
language of any finite signature. But for the (weak) completeness result of this section, the
advantage of the extended definition is lost. The point is that for single sentences, we may
restrict attention to a finite subset of S . And for finite sets S , L(S) is literally the language
of the coproduct signature

⊕{Σ : Σ ∈ S}.

We already have completeness for such languages.
Our final extension concerns the move from actions as we have been working with

them to actions which change the truth values of atomic sentences. If we make this
move, then the axiom of Atomic Permanence is no longer sound. However, it is easy to
formulate the relevant axioms. For example, if we have an action α which effects the change
p := p ∧ ¬q, then we would take an axiom [α]p ↔ (PRE(α) → p ∧ ¬q). Having made
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these changes, all of the rest of the work we have done goes through. In this way, we get a
completeness theorem for this logic.

Endnotes

Special cases of Theorem 5.24 for some of the target logics are due to Plaza [1], Ger-
brandy [2,3], and Gerbrandy and Groeneveld [4]. The proofs in these sources also go via
translation to modal logic.

6. Results on Expressive Power

In this section, we study a number of expressive power issues related to our logics.
The four subsections are for the most part independent.

6.1. Translation of L1(Σ) into PDL

In this section, Σ is an arbitrary action signature. In Section 5.2.3, we saw normal forms
for L0(Σ) and L1(Σ). We showed in that section that every sentence in L1(Σ) is provably
equivalent to its normal form, and the normal forms of sentences of L0(Σ) are exactly the
purely modal sentences. This proves that in terms of expressive power, L0(Σ) is equivalent
to L0, ordinary modal logic.

Further, we can show that L1(Σ) and, indeed, the full language L(Σ) is a sublogic of
Lω

0 , the extension of modal logic with countable Boolean conjunction and disjunction. The
idea is contained in the following clauses:

(2∗Bϕ)t =
∧
〈A1,...,An〉∈B∗(2A1 · · ·2An ϕ)t

([α]2∗Bψ)t =
∧
〈A1,...,An〉∈B∗([α]2A1 · · ·2An ψ)t

([π]∗ϕ)t =
∧

n([π]n ϕ)t

It is natural to ask whether there are any finite logics which have been previously studied
and into which our logics can be embedded. One possibility is the Modal Iteration Calculus
(MIC) introduced in Dawar, Grädel, and Kreutzer [19]. The full language L(Σpub) is a
sublanguage of MIC; see [14] for details. It is likely that this result extends to all other finite
action signatures. In another direction, we ask whether the fragments L1(Σ) are sublogics
of previously studied systems.

Theorem 6.1. Every sentence of L1(Σ) is equivalent to a sentence of PDL.

Proof. (Sketch) We argue by induction on the well-order < introduced and studied in
Section 5. It is sufficient to show that each sentence in the setNF of normal forms of L1(Σ)
is equivalent to a sentence of PDL. (The normal forms were introduced in Section 5.2.3, and
the reader may wish to look back at Lemma 5.17.) We just give the main induction step.

Suppose that [α]2∗Cϕ is a normal-form sentence. Our induction hypothesis implies
that each ψ < [α]2∗Cϕ is equivalent to some PDL sentence ψ′. We shall show that 〈α〉3∗C is
itself equivalent to some PDL sentence; hence, [α]2∗Cϕ also has this property. For this, we
use the semantic equivalent given in Lemma 4.11. Recall first that there are only finitely
many β such that α−→C∗ β. Let X be the (finite) set of all such β such that α−→C∗ β. That is, the
actions β reachable from α by a path labeled by agents in the set C. We consider X as a
sub-action structure of Ω.

We consider C ∪ X, and we assume that this union is disjoint. We consider the set
(C ∪ X)∗ of all finite words on this set. We are interested in finite C-labeled paths through
X beginning at α and ending at an arbitrary element of X. At this point, we shall develop
our proof only by example.

Suppose that C = {A, B} and that X = {α, β}, with α→A α, α→B β, and β→A α. Then
one of the paths of interest would be

α A α B β A α
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(Note that this corresponds to α→A α→B β→A α.) We are only interested in paths that respect
the structure of Ω. By Kleene’s Theorem, the set P of finite paths of this type beginning at
our fixed action α is a regular language on C ∪ X. In our example, P is given by the regular
expression

((α(Aα)∗(BβA))∗(ε + Bβ).

With each such regular expression we associate a PDL program that represents it. In our
example, we would have

(?PRE′(α); ((〈A〉; ?PRE′(α))∗; (〈B〉; ?PRE′(β); 〈A〉))∗; (?true+ 〈B〉; ?PRE′(β)).

(The notation PRE′(γ) means the PDL translation of PRE(γ); such a PDL sentence ex-
ists since PRE(γ) < [α]2∗Cϕ.) Again, this is a PDL program π = π(X, α) whose denotation
[[π]]S in a state model S is the set of pairs (s, t) of states such that there is a path

s = s0 →A1 s1 →A2 · · · →Ak−1 sk−1 →Ak sk

and also a sequence of actions of the same length k,

α = α0 →A1 α1 →A2 · · · →Ak−1 αk−1 →Ak αk

such that each Ai ∈ C, each si ∈ [[PRE(αi)]]S for all 0 ≤ i ≤ k, and, finally, such that
sk = t. Consider now the PDL sentence 〈π〉(〈αk〉ϕ)′. (As above, (〈αk〉ϕ)′ means the PDL
translation of 〈αk〉ϕ. This exists because [αk]ϕ < [α]2∗Cϕ; see Lemma 5.17.) A state s
satisfies 〈π〉(〈αk〉ϕ)′ in S if there is some (s, t) ∈ [[π]]S such that t ∈ [[〈αk〉ϕ]]S. Putting
together our description of [[π]]S with this, we see that (s, t) ∈ [[π]]S iff s ∈ [[〈α〉3∗C ]]S; see
Lemma 4.11.

Remark 6.2. Theorem 6.1 also follows from the closure of a different system, epistemic
PDL (not discussed in this paper), under action modalities. This was proved by Jan van
Eijck [20], and it also appears in [9]. The method of proof is very similar to what we have
presented.

At this point, we know that L1(Σ) is a sublogic of PDL. So it is interesting to ask
whether this extends to the full logic L(Σ); recall that this last language has the operation
of program iteration π∗. It turns out that L(Σ) lacks the finite-model property even when Σ

is as simple as the signature of public announcements and, indeed, when the only sentence
announced publically and repeatedly is 3true (see Section 6.4, below). Since PDL has the
finite model property, we see that L(Σ) is not a sublogic of PDL. In fact, it also shows that
L(Σ) is not even a sublogic of the modal mu-calculus.

6.2. L1(Σpub) is More Expressive than L1

Recall that L1 in this paper is multi-agent modal logic together with the common-
knowledge operators 2∗B for sets of agents. Our main result here is that L1 is strictly weaker
than L1(Σpub), the logic obtained by adding public announcements to L1.

We define a rank |ϕ| on sentences from L1(Σpri). Let |p| = 0 for p atomic, |¬ϕ| = |ϕ|,
|ϕ∧ ψ| = max(|ϕ|, |ψ|), |3A ϕ| = 1+ |ϕ|, for all A ∈ A, and |3∗Bϕ| = 1+ |ϕ| for all B ⊆ A.

6.2.1. Games for L1

The main technique in the proof is an adaptation of Fraisse–Ehrenfeucht games to the
setting of modal logic. Let (S, s) and (T, t) be states; i.e., model-world pairs. By recursion
on the natural number n, we define a game Gn((S, s), (T, t)). For n = 0, II immediately
wins if the following holds: for all p ∈ AtSen, (S, s) |= p if (T, t) |= p. And if s and t
differ on some atomic sentence, I immediately wins. Continuing, here is how we define
Gn+1((S, s), (T, t)). As in the case of the G0 games, we first check if s and t differ on some
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atomic sentence. If they do, then I immediately wins. Otherwise, the play continues. Now
I can make two types of moves.

1. A 3A-move: I has a choice of playing from S or from T, and also some agent A. If I
chooses S, then I continues by choosing some s′ such that s→A s′ in S. Then II replies
with some t′ ∈ T such that t→A t′. Of course, if I had chosen in T, then II would have
chosen in S. Either way, points s′ and t′ are determined, and the two players then play
Gn((S, s′), (T, t′)).

2. A 3∗B-move: I plays by selecting S (or T, but we ignore this symmetric case below),
and some set B of agents, and then I continues by playing some s′ (say) reachable
from s in the reflexive-transitive closure −→B∗ of→B ; II responds with a point t′ in the
other model, T, which is similarly related to t.

We write (S, s) ∼n (T, t) if II has a winning strategy in the game Gn((S, s), (T, t)). It is
easy to check that by induction on m that if (S, s) ∼n (T, t) and m < n, then (S, s) ∼m (T, t).

Proposition 6.3. If (S, s) ∼n (T, t), then for all ϕ with |ϕ| ≤ n, (S, s) |= ϕ if (T, t) |= ϕ.

The proof is standard, except perhaps for the easy extra step for 3∗ moves.

We have two results that show that public announcements add expressive power to
L1. The first is for one agent on arbitrary models, and the second is for two agents on
equivalence relations.

In the first result, let A be a singleton {A}. We drop the A from the notation.

Theorem 6.4. The L1(Σpub) sentence 〈Pub p〉3∗q is not expressible in L1, even by a set of
sentences.

Proof. Fix a number n. We first show that 〈Pub p〉3∗q is not expressible by any single
sentence of L1 of rank n. Let An be the cycle

a0 → a1 → · · · → an+2 → an+3 → · · · a2n+4 = a0.

We set p to true everywhere except an+2 and q true only at a0.
Announcing p means that we delete an+2. So, An(Pub p) splits into two disjoint pieces.

This means that in An(Pub p), a1 does not satisfy 3∗q. But an+3 does satisfy it.
We show that a1 and an+3 agree on all sentences of L1 of rank ≤ n. For this, we show

that II has a winning strategy in the n-round game on between (An, an+1) and (An, an+3).
Then we appeal to Proposition 6.3. II’s strategy is as follows: if I ever makes a 3∗ move, II
should make a move on the other side to the exact same point. (Recall that An is a cycle.)
Thereafter, II should mimic I’s moves exactly. Since the play will end with the same point
in the two structures, II wins. But if I never makes a 3∗ move, the play will consist of
n 3-moves. II should simply make the same moves in the appropriate structures. Since
an+2 is n + 1 steps from a1, and a0 = a2n+4 is n + 1 steps from an+3, II will win the play in
this case.

So at this point we conclude that for all n, 〈Pub p〉3∗q is not expressible by any
single sentence of L1 of rank n. We conclude by extending this to show that 〈Pub p〉3∗q
is not expressible by any set of sentences of L1. Suppose towards a contradiction that
〈Pub p〉3∗q were equivalent to the set T ⊆ L1. Consider the following models A and
B: A = ⊕n≥0(An, an

1 ); i.e., take the disjoint union of the models ⊕An, and then identify
all points an

1 . We also rename the common an
1 point to be a, and we take this as the

distinguished point. So we consider (A, a). Similarly, let B = ⊕n≥0(An, an
n+3). For clarity

we will rename each point am
j to be bm

j . And we write b for the distinguished point of B.
The construction insures that (A, a) |= ¬〈Pub p〉3∗q and (B, b) |= 〈Pub p〉3∗q.

By definition of T, (B, b) |= ϕ for all ϕ ∈ T. Let ϕ ∈ T be such that (A, a) |= ¬ϕ. Let
m = |ϕ|. Let

C = ⊕({(An, an
1 ) : n 6= m} ∪ {(Am, am

m+3)}).
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Notice that we switched exactly one of the identified points. Just as before, we will
rename the points of C and call the overall distinguished point c. It is easy to check that
(C, c) |= 〈Pub p〉3∗q. And since this sentence is equivalent to T, we also have (C, c) |= ϕ.
But we now show that (A, a) and (C, c) agree on all sentences of rank ≤ m. This implies
that (A, a) |= ϕ, giving the needed contradiction.

Here is a winning strategy for II in the m-round game between (A, a) and (C, c). If
I opens with anything besides cm

m+3 or am
1 , II should play the corresponding point on the

other side and, thereafter, play in the obvious way. If I opens with cm
m+3, II should play

with am
1 and, thereafter, play with basically the same strategy as in the first part of this

theorem; similarly, if I opens with am
1 , II should reply cm

m+3 and, thereafter, play via the
strategy in the first part of this proof, where we dealt with single sentences.

6.2.2. Partition Models

Often in epistemic logic one is concerned with models in which every accessibility
relation →A is an equivalence relation. We can obtain a version of Theorem 6.4 which shows
that even on this smaller class of models, public announcements add expressive power to
L1. However, we must use two agents: with one agent and an equivalence relation 2∗ϕ is
equivalent to 2ϕ. Thus, every sentence in L1(Σpub) on one-agent equivalence relations is
equivalent to a purely modal sentence.

Theorem 6.5. The L1(Σpub) sentence 〈Pub p〉3∗A,Bq is not expressible by any set of sentences of
L1, even on the class of models in which →A and →B are equivalence relations.

Proof. We fix a number N and first show that 〈Pub p〉3∗q is not expressible by any single
sentence of L1 of rank N. Let n be the smallest even number strictly larger than N. Let Cn
be as defined in Section 3.2 above. Note that Cn does have the property that →A and →B are
equivalence relations. In addition, (→A )∗ is the same relation as →A . So, 2∗A ϕ is equivalent
to 2A ϕ (and similarly for B). Finally, (→A ∪ →B )∗ is the universal relation. So if any point
whatsoever satisfies a sentence 2∗A,B ϕ, then all points satisfy it.

The analysis of Section 3.2 shows that the points an+1 and a3n+1 differ on our sentence
〈Pub p〉3∗A,Bq.

We continue by showing that II has a winning strategy in the n-round game on Cn
from an+1 and a3n+1. If I ever makes a 3∗ move, then II should move to the same point
and, thereafter, mimic I perfectly. Thus, we may assume that I never makes any 3∗ moves.
In this case, I will never move either point to a1, a2n+1, or a4n+1. In other words, all points
in the play will satisfy p ∧ ¬q. So, as long as I plays 3-moves, II can follow arbitrarily.
Once again, since the game goes for n rounds, this will be a winning strategy.

At this point we know that 〈Pub p〉3∗q is not expressible by any single sentence of
L1 of rank n > N. We use the same idea as in Theorem 6.4 to show that 〈Pub p〉3∗q is not
expressible by any set of sentences of L1. In fact, virtually the same proof goes through.

6.3. L1(Σpri) is More Expressive than L1(Σpub)

It is natural to assume that privacy adds expressive power to logics of communication.
The result of this section is the first result we know that establishes this. In it, we assume
that our set of agents is the doubleton {A, B}.

Theorem 6.6. The sentence χ of L1(Σpri) from (8) and repeated below

χ ≡ 〈PriA p, true〉3∗A3B¬p

cannot be expressed by any sentence of L1(Σpub), and 3Aχ cannot be expressed by any set of
sentences of L1(Σpub).
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We define a function |ϕ| on L(Σpub): |p| = 0 for p atomic, |¬ϕ| = |ϕ|, |ϕ ∧ ψ| =
max(|ϕ|, |ψ|), |3A ϕ| = 1 + |ϕ|, |3B ϕ| = 1, |3∗Bϕ| = |ϕ| for all B ⊆ A, and |[Pub ϕ]ψ| =
max(|ϕ|, |ψ|).

Lemma 6.7. Let ϕ ∈ L(Σpub), and let 1 ≤ k ≤ n. If n− k ≥ |ϕ|, then

(Sn, a) |= ϕ iff (Sn, ck) |= ϕ iff (Tn, a) |= ϕ.

Proof. By induction on ϕ. The base step for atomic p and the induction steps for the
Boolean connectives are all trivial.

Here is the induction step for 3A ϕ. Fix k with n − k ≥ |3A ϕ| = 1 + |ϕ|. Thus,
n− k > n− (k + 1) ≥ |ϕ|. We prove the needed equivalences in a cycle.

Assume first that (Sn, a) |= 3A ϕ. The only arrows from a in Si are to a→A a and a→A b.
If (Sn, a) |= ϕ, then the reflexive arrow on ck and the induction hypothesis show that
(Sn, ck) |= 3A ϕ. If (Sn, b) |= ϕ, then clearly (Sn, ck) |= 3A ϕ via ck→A b.

Second, assume that (Sn, ck) |= 3A ϕ. We show that (Tn, a) |= 3A ϕ. Notice that one of
the following holds: (Sn, ck) |= ϕ, (Sn, b) |= ϕ, or (Sn, ck+1) |= ϕ. The first case is handled
easily by the induction hypothesis. In the second, we have by (9) that (Tn, b) |= ϕ; hence
(Tn, a) |= 3A ϕ. We are left with the case (Sn, ck+1) |= ϕ. Since n − (k + 1) ≥ |ϕ|, the
induction hypothesis implies that (Tn, a) |= ϕ. Since a→A a, (Tn, a) |= 3A ϕ.

Finally, assume that (Tn, a) |= 3A ϕ. We verify that (Sn, a) |= 3A ϕ. In view of the fact
that a→A c1 in T, one of the following holds: (Tn, a) |= ϕ, (Tn, b) |= ϕ, or (Tn, c1) |= ϕ. The
only important case is the last. Since n− 1 ≥ n− k ≥ |ϕ|, our induction hypothesis implies
that in this case, (Sn, a) |= 3A ϕ, as desired.

We continue with the induction step for 3B ϕ. Recall that |3B ϕ| = 1. Since we assume
n − k ≥ 1, we have k < n. There are no B-arrows from ck or from a. All three needed
statements in our lemma are false, so all three are equivalent.

Next, we have the induction step for 3∗Bϕ, where B is either {A}, {B}, or {A, B}. With
two agents, B can be {A}, {B} or {A, B} here. Note that →B is already transitive, so all the
work for 3∗B ϕ has been done above already. Also, →B is a subrelation of →A in both Sn and
Tn. Thus, we only need to work with B = {A} in this induction step.

Assume first that (Sn, a) |= 3∗Bϕ. There are a number of cases. If (Sn, a) |= ϕ, then
by induction hypothesis, (Sn, ck) |= ϕ. So, (Sn, ck) |= 3∗Bϕ as well. The other case is
where a−→B∗ x, x |= ϕ, and x is among the points b, c1, . . ., cn. Note in this case that ck−→B

∗ x
as well: all non-null paths from a go through b, and ck→A b. Thus, in this case, we have
(Sn, ck) |= 3∗Bϕ.

Next, assume that (Sn, ck) |= 3∗Bϕ. Let x be such that ck−→B
∗ x and (Sn, x) |= ϕ. Clearly,

x 6= a. By (9), (Tn, x) |= ϕ. Also, a→A b−→B∗ ck−→B
∗ x. So (Tn, a) |= 3∗Bϕ.

Suppose, finally, that (Tn, a) |= 3∗A ϕ. If (Tn, a) |= ϕ, then by induction hypothesis we
have (Sn, a) |= ϕ. So, in this case, (Sn, a) |= 3∗Bϕ as well. The other case is where (Tn, x) |=
ϕ for some x 6= a. By (9) again, (Sn, x) |= ϕ. And in Sn, a−→B∗ x. Thus (Sn, a) |= 3∗Bϕ, as
desired.

The most interesting step is the induction step for [Pub ϕ]ψ. Fix k with n − k >
|[Pub ϕ]ψ| = max(|ϕ|, |ψ|). Thus, n− k ≥ |ϕ|, |ψ|, and our induction hypothesis applies to
both ϕ and ψ. In particular, the following are equivalent:

(Sn, a) |= ϕ (Sn, ck) |= ϕ (Tn, a) |= ϕ (20)

Let us save on some notation by defining

S∗n = S⊗ (Σpub, Pub, ϕ)
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and, similarly, for T∗n. Moreover

[[[Pub ϕ]ψ]]Sn = {x ∈ Sn : if x ∈ [[ϕ]]Sn , then (x, Pub) ∈ [[ψ]]S∗n} (21)

A similar equation holds for Tn.
Case I: (Sn, a) 6|= ϕ. Since n − k ≥ |ϕ|, we have by (20) that (Sn, ck) 6|= ϕ, and

(Tn, a) 6|= ϕ. So, automatically, all three of the relevant model-world pairs satisfy our
sentence [Pub ϕ]ψ.

Case II: (Sn, a) |= ϕ and (Sn, b) 6|= ϕ. Then by induction hypothesis, (Sn, ck) |= ϕ,
and (Tn, a) |= ϕ, and by (9), (Tn, b) 6|= ϕ. In S∗n and T∗n, each point satisfies p and has
no →B -successors, and every point has an →A -successor (itself). Thus, the following are
equivalent:

(S∗n, (a, Pub)) |= ψ (S∗n, (ck, Pub)) |= ψ (T∗n, (a, Pub)) |= ψ (22)

In more detail, the three model-world pairs above are all bisimilar to a one-point model
which is a point satisfying p with a loop for →A . Hence, we have (22). This implies that the
following are indeed equivalent:

(Sn, a) |= [Pub ϕ]ψ (Sn, ck) |= [Pub ϕ]ψ (Tn, a) |= [Pub ϕ]ψ. (23)

Case III: (Sn, a) |= ϕ, (Sn, b) |= ϕ, and for some ` such that 1 ≤ ` ≤ n, (Sn, c`) 6|= ϕ.
We take the smallest such `. Since 1 ≤ k, n− 1 ≥ n− k ≥ |ϕ|. So (Sn, c1) |= ϕ by induction
hypothesis. Thus, ` > 1. Let m = `− 1. Then m ≥ 1. The point (cm, PriA) in the updated
model S∗i has A arrows only to itself and to (b, Pub). Indeed, the model is

(a, Pub)
A // (b, Pub)

A // (c1, Pub)
A // · · · A // (ci , Pub)

A

vv A // · · · A // (cm, Pub)

A

vv

What we have drawn is the part of the model accessible from the points shown. We
also have not drawn the reflexive A arrows. Notice that there are no B arrows whatsoever.
As before, p is true at all points accept (b, Pub). This model is bisimilar to

(a, Pub)

A

66
(b, Pub)

A
vv

Again, we have omitted the A loops on both points. The same happens with T̂n; the edge
a→A c1 in Tn does not change things. Note that the bisimulations relate (ck, Pub) to (a, Pub).
The bisimulation shows the same equivalences (22) which we saw above, and this leads to
the desired equivalences in (23).

Case IV: (Sn, a) |= ϕ, (Sn, b) |= ϕ, and for all ` such that 1 ≤ ` ≤ n, (Sn, c`) |= ϕ. That
is, ϕ holds at all worlds of Sn. Recall that n− k ≥ |ψ|. So our induction hypothesis tells us
that the following are equivalent

(Sn, a) |= ψ (Sn, ck) |= ψ (Tn, a) |= ψ (24)

In this case, the models Sn and S∗n are isomorphic, via x 7→ (Pub, x). That is, we are making
a public announcement of a sentence ϕ that holds at all worlds of our model Sn. But in
this case we claim that ϕ is also true at all worlds x of Tn. This follows from (9) for x 6= a,
and for x = a it follows from (20) and the first assumption in this case. So Tn and T∗n are
isomorphic, again via x 7→ (Pub, x). Thus, we have the equivalences in (22). These, together
with those in (20), imply those in (23), once again.

This completes the induction, and, hence, the proof of our lemma.
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It follows from what we have seen that our sentence χ ≡ 〈PriA p, true〉3∗A3B¬p is not
equivalent to any single sentence of L1(Σpub). We would like to see that some sentence
of L1(Σpri) is not equivalent to any set of sentences of L1(Σpub). For this, we add a 3A and
consider 3A〈PriA p, true〉3∗A3B¬p. We begin with a general model-theoretic construction
which will be used in the remainder of this section.

Definition 6.8. Let I be any set; let A ∈ A; and for each i ∈ I, let (Hi, hi) be a model-world
pair. Let h be a new world. Take disjoint copies of the Hi’s and add an A arrow from h
to each hi. All other arrows are within the Hi’s and stay the same as in Hi. No atomic
sentences are true at h. Atomic sentences true in the worlds belonging to the copy of Hi in⊕

i∈I(Hi, hi) are precisely those true at the corresponding worlds of Hi.

Lemma 6.9. Let ϕ be a sentence in L1(Σpub). Let I be any set, and for i ∈ I, let (Hi, hi) and (Ki, ki)
be model-world pairs. Assume that for all i ∈ I, (Hi, hi) and (Ki, ki) agree on all ψ ∈ L1(Σpub)
with |ψ| ≤ |ϕ|. Then, (

⊕
i∈I(Hi, hi), h) and (

⊕
i(Ki, ki), k) agree on ϕ.

Proof. By induction on ϕ. It is clear for atomic sentences. The induction steps for Boolean
connectives are trivial. We omit the easy arguments for the induction steps for 3 and 3∗

with various subscripts. It remains to consider the case when ϕ = [Pub ϕ1]ϕ2. (The cases
where we announce to {A} or to {B} are similar.) Fix I, and (Hi, hi) and (Ki, ki) for i ∈ I,
and assume that these agree on sentences ψ with |ψ| ≤ |[Pubϕ1]ϕ2| = max(|ϕ1|, |ϕ2|). In
particular, for each i ∈ I, (Hi, hi) |= ϕ1 if and only if (Ki, ki) |= ϕ1. Let

J = {i ∈ I : (Hi, hi) |= ϕ1} = {i ∈ I : (Ki, ki) |= ϕ1}.

For i ∈ J, let (Hi, h′i) and (K′i , k′i) be obtained by “updating (Hi, hi) and (Ki, ki) by [Pub ϕ1]”.
That is,

H′i = Hi ⊗ (Σpub, Pub, ϕ1)

and similarly for K′i . By our semantics of public announcements for all i ∈ J, (Hi, h′i) and
(K′i , k′i) agree on ϕ2. Therefore, by our inductive hypothesis

(
⊕
i∈J

H′i , h) |= ϕ2 iff (
⊕
i∈J

K′i , k) |= ϕ2.

However,

(
⊕
i∈I

Hi, h) |= ϕ iff (
⊕
i∈I

Hi, h) |= ϕ1 implies (
⊕
i∈J

H′i , h′) |= ϕ2,

and
(
⊕
i∈I

Ki, k′) |= ϕ iff (
⊕
i∈I

Ki, k) |= ϕ1 implies (
⊕
i∈J

K′i , k′) |= ϕ2,

and we are done.

At long last, we complete the proof of Theorem 6.6.
Recall that χ is 〈PriA p, true〉3∗A3B¬p. Assume towards a contradiction that the

sentence at the end of our theorem, 3Aχ, was equivalent to a set Φ of sentences in L1(Σpub).
Let N be the set of natural numbers ≥ 1. For each i ∈ N, consider Si and Ti from
Definition 3.1. Let si = a. In this notation, (Si, si) 6|= χ. Also, writing ti for a, we also have
(Ti, ti) |= χ. Moreover, for all i, (Si, si) and (Ti, ti) agree on sentences of L1(Σpub) of rank
≤ i− 1. (We are using Lemma 6.7 with k = 1.)

We consider (
⊕

i∈N Si, s) from above, with the new point being called s. Notice that
(
⊕

i∈N Si, s) 6|= 3Aχ. So, we have some ϕ∗ ∈ Φ such that (
⊕

Si, s) 6|= ϕ∗. Let n∗ = |ϕ∗|+ 1.
Let (S′i, s′i) be (Si, si) for i 6= n∗, and let (Sn∗ , s′n∗) be (Tn∗ , tn∗). Then, for all i, (Si, si) and
(S′i, s′i) agree on all sentences ψ of L1(Σpub) with |ψ| ≤ n∗ − 1 = |ϕ∗|. By Lemma 6.9,
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(
⊕

i∈N Si, s) and (
⊕

i∈N S′i , s′) agree on ϕ∗. (In this, s′ is the new point in (
⊕

i∈N S′i , s′).)
This tells us that (

⊕
i∈N S′i , s′) 6|= ϕ∗. A fortiori, (

⊕
i∈N S′i , s′) 6|= 3Aχ. Since s′→A sn∗ in this

model, we see that (Tn∗ , tn∗) 6|= χ. But this contradicts a fact which we recalled above.

6.4. L(Σpub) Lacks the Finite-Model Property

We conclude with a result on iterating epistemic actions. We gave a semantics of
sentences of the form [α∗]ϕ earlier in the paper. The ability to iterate actions is useful in
algorithms and even in informal presentations of scenarios. As it happens, the iteration
operation on actions makes our systems quite expressive, so much so that the finite-model
property fails for L1(Σ) as soon as Σ contains public announcements.

Proposition 6.10. [Pub 3true]∗32false is satisfiable, but not in any finite model.

Proof. A state s in a model S is called an end state if s has no successors. For each model
S, let S′ be the same model, except with the end states removed. S′ is isomorphic to what
we have written earlier as S⊗ (Pub 3true), that is, the result of publically announcing that
some world is possible. So we see that our sentence [Pub 3true]∗32false holds of s just in
case the following holds for all n:

1. s ∈ S(n), the n-fold application of the derivative operation to S.
2. s has some child which is an end node (and, hence, t would not belong to S(n+1)).

It is clear that any model of [Pub 3true]∗32false must be infinite, since the sets S(n+1) \ S(n)

are pairwise disjoint and non-empty.
There are well-known models of [Pub 3true]∗32false. One would be the set of de-

creasing sequences of natural numbers, with s → t if t is a one-point extension of s. The
end nodes are the sequences that end in 0. For each n, S(n) is the submodel consisting of
the sequences which end in n.

This has several dramatic consequences for this work. First, it means that the logics
cannot be translated into the modal mu-calculus, since that logic is known to have the
finite-model property. More importantly, we have the following extension of this result:

Theorem 6.11 (Miller and Moss [14]). Concerning L(Σpub):

1. {ϕ : ϕ is satisfiable} is Σ1
1-complete.

2. {ϕ : ϕ is satisfiable on a finite (tree) model} is Σ0
1-complete.

Indeed, these even hold when L(Σpub) is replaced by small fragments, such as the
fragment built from [Pub 3true], 3∗, 3, and Boolean connectives (yet without atomic
sentences); or, the fragment built from arbitrary iterated relativizations and modal logic
(without 3∗). These negative results go via reduction from domino problems.

The upshot is that logics which allow for arbitrary finite iterations of epistemic actions
are not going to be axiomatizable.

We feel that our results on expressive power are just a sample of what could be done
in this area. We did not investigate the next natural questions. These questions have to
do with notions of “suspicion” and “common knowledge of suspicion”. It would take
us too far afield to mention them here, but one could see, for example, Refs. [6,21] for
precise definitions. Do announcements with suspicious outsiders extend the expressive
power of modal logic with all secure private announcements and common knowledge
operators? And, then, do announcements with common knowledge of suspicion add
further expressive power?

6.5. Conclusions

This paper advanced the subject of dynamic epistemic logic (DEL) by introducing
logical systems for the logical languages which it studied and also by obtaining a number
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of results about those logical systems. Prior to this paper, there had been logical systems:
see, for example, [1–4]. These were mainly interested in what has become known as
public-announcement logic (PAL), and while these papers point out forcefully that common
knowledge was an important topic for the area, they did not obtain completeness theorems
for PAL with common knowledge. Our advance on these was (a) to add to PAL the ability
to express a much wider array of epistemic actions; (b) to use action signatures in the syntax,
and updates, program models, and the update product in the semantics; and (c) to obtain
the completeness of the all the logical systems proposed, including common-knowledge
operators. This paper did not go into much detail on why one would want to add epistemic
operators beyond public announcement; this was done in [6,21] and many other papers.
It did formulate logical systems as desired; a look at the first three sections of this paper
shows that this formulation takes a lot of work. It also obtained the completeness results for
these logical systems, and it did so by calling on results on the canonical action model and
also results in term rewriting theory. Those particular results have not been superseded:
while others (for example, [7]) have obtained completeness theorems, the logics involved
were different, and the proofs also were different. As a final contribution, this paper was
perhaps the first to obtain expressive-power results. In addition to being mathematically
interesting, they suggest that the large amount of work needed to formulate the syntax and
semantics of the logics in this paper is worthwhile. For example, since the logic of private
announcements goes beyond what could be expressed in PAL, one really needs a bigger
logical system if one wants a general account of private announcements.

An early version of this paper, and several other papers, played an important part
in advancing the DEL area. At the present time (2023), there are over 1000 references
to [5], the first version of this paper. It is beyond anyone’s ability to look at all of them,
regardless of how (or even whether) they used the ideas here or modified them. We know
that many of the important contributions to the area of dynamic epistemic logic (broadly
conceived) do go beyond what we did here. They modify the overall framework, and they
aim at applications which go beyond what one could treat using what we did. Still, we
maintain that the published (and unpublished) preliminary versions of this paper made an
important contribution to the area. We also think that the current, more polished version is
a smaller but still significant further contribution, adding both more technical results and
a better, clearer formulation of the main concepts and setting of contemporary dynamic
epistemic logic.
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Notes
1 If it is, then this would show that the completeness result here is definitely not a special case of that in [9]. But again, the matter is

open at this time (2023): one cannot derive our result from [9] since the systems are prima-facie different
2 As the authors of [9] admit: “We have found no practical use for these [complex combinations of agent accessibility relations] at

present”. It is true that they go on to argue that, as a result of our more restrictive syntax, “it’s completeness theorem [from [5]] is
correspondingly messy”. However, the additional complications of our proof are mainly due to our choice of a strictly “syntactic
syntax”, and partly to the explicit rewriting work (taken for granted in [9]), and only in small part due to our restricted static base

3 We are writing relational composition in left-to-right order in this paper
4 Note that basic actions are just syntactic expressions, in contrast to the signature-based program models in Section 2.2, which came

with a list ~ψ of epistemic propositions (which we wrote using boldface letters ψ1, . . . , ψn). Also note that basic actions might not be
“atomic” in the sense that the sentences ψj might themselves contain programs
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5 These are Kripke frames similar to our signatures, with the difference that one requires that only finitely many action types are
reachable from a given action type via any concatenations of arrows. The definition of the languages L(Σ) is significantly more
complex for locally finite signatures, so in this paper we restrict our signatures to finite ones only

6 Another possibility which we did not explore is to consider rewriting modulo the identity [α; β]ϕ = [α][β]ϕ
7 We use the same symbol [[ ]] for our interpretation as we used for the valuation in a state model in Section 2.1. Since our use of

interpretations is confined to this section of the paper, we feel that the confusion due to overloading the symbol [[ ]] should be
minimal

8 It does not matter which sequence or which normal form is chosen
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