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Abstract: Motion capture is a fundamental technique in the development of video games and in
film production to animate a virtual character based on the movements of an actor, creating more
realistic animations in a short amount of time. One of the ways to obtain this movement from an actor
is to capture the motion of the player through an optical sensor to interact with the virtual world.
However, during movement some parts of the human body can be occluded by others and there can
be noise caused by difficulties in sensor capture, reducing the user experience. This work presents
a solution to correct the motion capture errors from the Microsoft Kinect sensor or similar through
a deep neural network (DNN) trained with a pre-processed dataset of poses offered by Carnegie
Mellon University (CMU) Graphics Lab. A temporal filter is implemented to smooth the movement,
given by a set of poses returned by the deep neural network. This system is implemented in Python
with the TensorFlow application programming interface (API), which supports the machine learning
techniques and the Unity game engine to visualize and interact with the obtained skeletons. The
results are evaluated using the mean absolute error (MAE) metric where ground truth is available
and with the feedback of 12 participants through a questionnaire for the Kinect data.
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1. Introduction

In the field of entertainment, particularly video games and film, the movements of
virtual characters are an important factor in making the content appealing. Characters are
animated using 3D editing tools, such as Blender or Autodesk Maya, by modifying the
pose of the skeleton attached to the model. There are frame interpolation techniques that
smooth out the movements of the skeleton and facilitate the animation process; however, in
some cases it is difficult to replicate real human movements. In the case of video games that
are close to reality, creating all the character animations manually requires a lot of effort
and time.

Nowadays, systems are used to capture the real movements of the actor and transfer
them to the virtual character. In this way, it is possible to generate movement that is closer
to reality, in a short period of time, regardless of its complexity. This technology introduces
a new way of interacting with video games based on the movements of the player and
without the need for controllers. Thus, motion capture is an important process not only for
generating real and specific movements in order to “bring to life virtual characters”, but it
also allows for greater immersion in virtual/augmented reality applications. There are two
main capture systems:

• Optical systems [1], based on one or more cameras that capture information from the
skeleton via infrared or information from a set of well-positioned markers on the actor.
For instance, systems based on a Microsoft Kinect device, Intel RealSense camera, or
LeapMotion device.
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• Non-optical systems, which in general, are based on a set of devices composed of
gyroscopes positioned on the joints of the actor to capture the position and orientation
of each one. The systems Xsens [2], Rokoko [3], and Shadow [4] represent examples of
non-optical systems.

Although non-optical systems offer better quality, both in terms of accuracy of motion
capture and mobility (they are not limited to a certain area), the hardware components can
be expensive. Optical systems, on the other hand, can be based on just one camera, but
they are subject to errors that have to be corrected manually, which takes effort and time.
There is a high demand for systems that automatically correct captured movements with as
little hardware as possible, for example, a single Microsoft Kinect sensor, in order to reduce
system cost. In recent years, DNNs have been used to achieve state-of-the-art results in
various computer graphics problems, including motion capture denoising [5]. In Refs. [6,7],
the networks are able to detect noise and predict the best pose for the skeleton, as well as
determining whether this pose is possible for a human being.

This paper describes a solution to correct human body pose capture errors caused by a
Kinect sensor, particularly joint displacements and occlusions. A study carried out with this
sensor found that 16% of the captured poses had occlusions (as presented in Section 3.2).
Therefore, there arose a need to create a system that mitigates this problem. In this solution,
the Kinect sensor is used, but the proposed system can be used in any other camera with
depth sensors of the same type.

The work developed follows an approach similar to that of Daniel et al. [6] adapted to
the specific problem. Neural networks require a large amount of training data, and for this
the set of motions captured by CMU Graphics Lab [8] is used, adapted in a way so that
the structure of the skeleton used in this database is similar to the skeleton produced by
the Kinect.

This document is organized as follows. The next section presents a set of studies that
propose a solution for noise correction in human body motion capture, using filters and
learning techniques. Then, the proposed solution is described in Section 3, which includes
the method used to transform the CMU skeleton to the Kinect skeleton in Section 3.1
and the denoising system in Section 3.2, along with the tools for its implementation in
Section 3.3. Section 4 presents and discusses the results achieved. The final section presents
the conclusions and indicates some directions for future work.

2. Related Work

Replicating an actor’s human movements in virtual characters in augmented or virtual
reality applications presents several challenges. One of them is real-time capture. There
has been an effort to develop algorithms for tracking the human body in real time [9–14].
This task is essential for systems applied to real-time interaction, such as in games or
human–machine interfaces. The complexity of the challenge is related to many factors,
such as the use of one single depth camera [9] or multiple cameras [6], and the use of a
2D [10,14] or 3D model [9,11,12]. Single-person [14] or multi-person capture [10,12] is also
an issue which can add complexity. More recently, MediaPipe [13] from Google has been
used for robust human pose estimation [14]. MediaPipe is a framework that can configure
an application and manage resources efficiently for low-latency performance.

Another relevant task is the capture of the human body without errors. Denoising
methods are important to address this issue. In general, the work that has been proposed
to reduce noise in motion capture is based on techniques that introduce two types of prior
knowledge [6]: the temporal prior [15,16] and the pose-based prior [17]. The temporal
prior exploits the fact that joints must respect the laws of physics and cannot jump instanta-
neously to a new position. The work published by Aristidou et al. [15] is an example of
a proposal based on this prior, in which a Kalman filter is implemented. The pose-based
prior states that the skeleton can only take poses that are possible for a human being. The
systems that encode this prior use machine learning techniques and rely on a large amount
of data. Currently, deep neural networks with the concept of denoising are used to reduce
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the noise in a dataset, mainly when image data are used [5]. These networks have the
advantage of being able to encode the two priors by passing a sequence of poses to the
network, as presented in the article by Daniel et al. [7]. However, there is another approach
proposed by Daniel et al. [6] where the neural network processes the poses individually,
applying a temporal filter at the end in order to smooth out the movement.

Many other strategies are used to address this issue. Aristidou et al. [18] proposes
a method that detects joint errors and corrects them based on similar movements. The
rotations of the joints are grouped in a matrix called “motion-texture” in which each row
represents a joint and each column a time instant. The motion sequence is divided into sub-
groups, called “motion-words”. For each “motion-word”, the k-nearest neighbors (KNNs)
are found and their mean is used to determine the “mean-motion-texture”. Subtracting this
last matrix from the original one gives rise to the “movement digression map” matrix, where
errors can be quickly detected and replaced by the mean of the respective “motion-word”.
Although this method can detect and correct errors in simple and complex movements, the
skeletons to be compared must have a similar structure. This is not the case in our proposal,
as the poses are transformed and normalized before being processed by the network. The
size of the sequence is another problem, which may not be enough to determine a good
average for each “motion-word”. Finally, it is dependent on similar movements; therefore,
it needs a large number of samples, making the search process very slow, unlike the neural-
network-based methods which, although they take time in the training phase, are fast in
their predictions.

Another study, published by Chai et al. [17], is based on the principal component
analysis (PCA) technique, with the aim of producing the complete movement of the actor
from a small set of markers and two synchronized cameras. Since it is impossible to provide
an accurate movement with only 6 to 9 markers, a database with movements captured using
40 to 50 markers is used. The system is divided into three blocks. The “motion performance”
block transforms the information from the two cameras into low-dimensional signals. Next,
the “online local modeling” block applies the PCA technique to the database poses in
order to reduce their dimensionality to six to nine markers and determines the closest “k”
poses using the KNN method. Finally, the “online motion synthesis” block reconstructs
the poses using the trained linear model and the previously synthesized poses. The PCA
method produces a manifold (set of possible poses) which is used to remove errors. Being
a linear method, it does not adapt well to an increase in training data, which is essential for
reconstructing poses accurately.

On the other hand, Daniel et al. [7] uses a type of neural network called an autoencoder,
which has a similar objective to the PCA method, i.e., to learn how to represent a dataset by
reducing its size and thereby generate a sample close to the input. This type of network has
been widely used in noise reduction problems, especially in images. The referenced work
describes an approach that includes the temporal prior. This is achieved by pre-processing
the sequences into subsets of 160 poses and normalizing the lengths of the joints. The
network receives the 160 poses, each with 63 degrees of freedom. The authors state that the
system is also capable of interpolating movements and that it gives better results than other
methods such as PCA. The main difference in this model is the coding of the temporal
prior in the network, which has been replaced by the “Savitzky–Golay” filter and which,
although it is not possible to interpolate the poses, removes the jitter caused by the network.

One of the most noteworthy works on solving this problem was published by
Daniel et al. [6]. This work is based on training a DNN called residual neural network
(ResNet) and pre-processing the CMU Graphics Lab data, including the markers used in
the capture and the joints obtained. The height of the skeleton is normalized to deal with
the problem of skeletons of different sizes. For each pose, a reference point is obtained to
represent the joints, using the “rigid body” alignment technique, in which a set of mark-
ers is chosen around the skeleton’s torso and the average of the points is calculated in
relation to a chosen joint, usually belonging to the spine. The calculated average point is
the skeleton’s rigid body and reference point. More recent proposals [19–21] on motion
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capture denoising are based on deep learning methods, namely, long short-term memory
(LSTM) neural networks [20,21] and B-Spline filtering [19]. These studies also used the
CMU Graphics Lab dataset [8], which is one of the most used.

Our proposal follows a similar strategy as in [6]. However, our goal is to correct the
poses returned by the Kinect sensor. As the data returned by this sensor are not identical to
those of the CMU Graphics Lab data, the solutions developed in the above works are not
suitable for this specific case. A method similar to the last work presented will be used,
with the the same type of deep neural network but with different inputs because there is no
marker information. The CMU Graphics Lab dataset and all the pre-processing are adapted
to match the Kinect skeleton.

3. Methods and Materials
3.1. Kinect and CMU Graphics Lab Skeletons

This section describes the two data structures, Kinect and CMU Graphics Lab data,
used in this work to represent the human body. The Kinect captures, in real time, a set of
joints that represent a simplified model of the human body (skeleton). The CMU dataset
provides various movements of the human body that must be processed in order to obtain
the segments of the skeleton.

Kinect was one of the first low-cost sensors, launched by Microsoft, capable of cap-
turing the movement of the user to interact with video games and other applications. It
consists of an RGB camera, a set of microphones, and a depth sensor [22].

Microsoft has released two versions, called “Kinect v1” and “Kinect v2”. Table 1
describes the hardware characteristics of the two versions of Kinect.

Table 1. Main features of Kinect versions.

Kinect v1 Kinect v2

Image Color 640 × 480 30 fps 1920 × 1080 30 fps
Image Depth 320 × 240 30 fps 512 × 424 30 fps

Range 0.8∼4.0 m 0.5∼4.5 m
Field of View (H/V) 57/43 degrees 70/60 degrees

Although Kinect has its own software development kit (SDK) (v1 and v2), in this work
a different one is used, developed by 3DiVi Inc (Walnut, California, United States) called
Nuitrack v0.29.0, compatible with both versions of Kinect and other depth sensors, for
example, Orbbec Astra S, Asus Xtion Pro, Asus Xtion 2, and Intel RealSense.

Nuitrack represents the human body with a skeleton made up of 17 joints (Figure 1).
Each joint is given its position and rotation in relation to a global referential. The SDK
represents each joint through a structure made up of various joint attributes. If the joint
is occluded, there is a parameter (confidence) that is set to zero, which gives us prior
knowledge of the status of the joint.

The motion capture dataset of CMU [8] consists of a set of motion captures organized
by categories and actors. Each actor contains a set of movements with their description.
The captures are made using 12 infrared cameras (Vicon MX-40) capable of capturing
images at 4 megapixels and 120 Hz, although not all the movements were captured at this
frequency. The actor contains 41 markers that will be used to determine their skeleton
during the recording.

Along with the markers, this dataset provides the movement of the skeleton in
ASF/AMC format defined by the Acclaim group [23]. This format consists of two files,
Acclaim Skeleton File (ASF) and Acclaim Motion Capture data (AMC). The first contains
information about the skeleton and the second about its movement in each frame. The
skeleton is defined by a hierarchy of segments, as shown in Figure 2, where the root point
represents the waist and is defined on a global coordinate axis. Each segment is represented
by a line connecting two circles. The complete model is composed of 31 joints but in the
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figure only 27 joints are represented. It is missing the right and left finger joints and also
the left and right thumb joints. The data used do not include them.

Figure 1. Nuitrack skeleton.

Figure 2. Hierarchical model of CMU dataset skeleton.

The ASF file displays information about the skeleton in a given initial pose. This file
describes the direction, length, axis, degrees of freedom of each segment, and the limits of
rotation. The root point is an exception for which only the initial position and orientation is
given, which is reflected in the position of the entire skeleton in global space.

The AMC file contains the movement for the skeleton defined in the ASF file. Each
frame describes the rotation of each segment in relation to the respective axis defined in
the ASF file. In order for the skeleton to move in space, the position of the root segment
is indicated.
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The poses of the skeleton at each time instant are generated from the ASF and AMC
files. These poses are made up of defined segments by their rotation and global position.
The rotations from the AMC file are applied to the initial skeleton defined by the ASF,
obtaining the rotation and global position of each segment at a given time.

In addition to the attributes taken directly from the ASF file, there are others that will
be calculated during the movement update, namely:

• Position: position of the end of the segment in the global coordinate system;
• Rotation: current rotation, from the AMC file;
• C: rotation matrix made up of “axis”;
• Cinv: inverse C matrix;
• M: global transformation matrix (rotation);
• MQuat: global rotation, defined by a quaternion(x, y, z, w), of the segment.

The process begins by analyzing the ASF file, defining a total of 31 segments. The
initial positions are determined from this file. The position of the segment is defined by the
end point of the segment. This point is calculated from the sum of the direction vector with
a magnitude equal to the length of the segment and the position of the “parent” segment.
This calculation is performed according to the hierarchy; therefore, the “parent” segment
has already been determined. After calculating the positions of all the segments, the initial
pose of the skeleton is obtained.

To determine the positions of the segments in the next frames, the skeleton hierarchy
is traversed, starting at the root element and, for each one, the respective rotations from the
AMC file are applied to the direction vectors and the position calculation is repeated.

As the AMC rotations are represented in relation to the ASF “axis”, while the direction
vector is represented in the global coordinate system, it is necessary to create a global
transformation matrix M that transforms these rotations to the same axis system as the
direction vector. In the end, a set of poses is obtained (the skeleton of the human body)
made up of 31 segments, each with information about its rotation and position in a global
coordinate system.

The objectives of the two acquisition systems are different. The CMU Graphics Lab
system, equipped with 12 infrared cameras, is used to build a large database with sequences
of human body movements, and given its accuracy, has an associated ground truth. The aim
of this work is to use CMU datasets to train a network to denoise the sequences acquired by
the Kinect. These sequences contain the natural noise of the acquisition process, which is
not estimated in this work. Therefore, there is no ground truth for the Kinect sequences and
it is expected that the denoising process can only minimize the impact of occlusion noise.

3.2. Kinect Poses Denoising System

The Kinect sensor can be used to replicate the movement of the human body in a virtual
character, for example, for virtual/augmented reality games. However, the occurrence of
occlusions, i.e., parts of the body that the camera does not detect, is common, reducing
the user experience. To analyze the occurrence of occlusions, a study was carried out with
33,000 poses captured by the Kinect sensor. Figure 3 shows a histogram of the occurrences
of static poses for different occlusion values. It can be seen that 16% of the poses have
occlusions, ranging from 1 to 6 occlusions per pose. This problem could be mitigated by
using a system that can detect the occluded poses of the human body and predict the
correct poses.

The aim of this work is to correct the poses of the human body captured by the Kinect
using machine learning techniques, in particular deep neural networks. Therefore, the
proposed model is based on a ResNet architecture. This type of method requires a large
amount of training data. Thus, the network must be trained with a training set identical to
the Kinect data, i.e., a set of 17 well-positioned joints containing the position and rotation.
In the research carried out during the development of this work, no database was found
with movements captured by Kinect and its meta-information suitable for the objectives
of this work. To overcome this difficulty, the dataset provided by CMU Graphics Lab is
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used. These data differ from the Kinect data in the way they are captured (sensors setup)
and also in the model used to represent the human body (skeleton). For this reason, the
proposed model includes a block for adapting the CMU data to Kinect data.

Figure 3. Histogram of the number of occlusions per pose.

The approach developed in this work is represented by the block diagram shown
in Figure 4. It begins with the process of transforming the skeleton defined by the CMU
dataset to the Kinect skeleton.

1 

 

 
   Figure 4. System block diagram.

The next block is related to the pre-processing of the data to avoid having to deal
with skeletons of different sizes. Additionally, the global coordinates of the joints are
transformed to the waist reference point (“waist” joint), reducing the number of joints
configurations to one configuration per pose; i.e., whatever the position of the skeleton in
the global reference frame, the joints for a given pose always have similar values.

The neural network implemented processes the poses individually, i.e., it has no
temporal knowledge of the animation; therefore, jitter is likely to appear in the sequence of
the returned poses. To combat this problem, the Savitzky–Golay [24] filter is applied to the
output of the network, which smooths out the movement.

Finally, the inverse conversion of the pre-processing block is carried out in order to
obtain the poses under the initial conditions.

3.2.1. Adapting the CMU Skeleton to Kinect

After obtaining a pose from the CMU dataset, the first step is to convert the segments
to joints, making the skeleton a set of joints rather than segments. This conversion is
achieved by going through the segment hierarchy. It is important to note the hierarchical
model of movement in the human body. For example, in the relationship between the
humerus segment and the elbow joint, the position of this joint is defined by the position
of the humerus segment, but its rotation must affect the next joint, i.e., it is defined by the
rotation of the “child” segment which, in this case, is the radius segment.
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Then, only the joints similar to the Kinect skeleton are selected and the rest are removed.
In Figure 5, the numbered joints in the CMU skeleton have been selected to represent the
Kinect joints with their number.

Figure 5. Mapping the CMU skeleton onto the Kinect skeleton.

For each human body movement sequence from the CMU dataset, the conversion is
performed and the data are saved in a CSV file. The CSV file consists of the joint name,
the components of the position (x, y, z) and rotation (quaternions), and the frame number.
Concerning the quaternions, the “transforms3d” library is used to support the calculations
for this unit. This library handles quaternions in the format (w, x, y, z), which is different
from the Kinect and the Unity game engine (tool used to reproduce the human movement)
convention (x, y, z, w). To convert to the desired format, the “w” channel is moved to last
and the “y” and “z” coordinates are inverted:

[w, x, y, z] → [x,−y,−z, w] (1)

The mapping from the CMU skeleton onto the Kinect skeleton is a transformation
between a more complete model with 31 joints to 17 joints from the Nuitrack model (Kinect).
This simplification can introduce potential limitations in capturing certain movements or
body configurations, increasing the diversity of noise that can be considered in the models.
For the sake of simplicity, this problem is considered to be modeled by the noise associated
with displacements, as described in Section 3.2.4.

3.2.2. Data Pre-Processing

To improve the DNN’s performance, the poses must be represented in a local coor-
dinate system, always with the same origin point, to avoid distinguishing between poses
that are the same but have different coordinates, i.e., each pose has a unique configuration.
Therefore, the pre-processing functions convert the global coordinates of a given joint to a
local coordinate system of a given origin; in this case the origin is the waist of the skeleton.
Global and local transformation matrices are obtained to convert the poses to local and
global coordinates.
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The poses are scaled to normalize the height and to not have to deal with skeletons
of different sizes, just different proportions. The scaling factor used is the average length
of the segments, µBoneLen, during the initial pose. For each pose, the joint hierarchy is
traversed and the new positions given by Equation (2) are calculated; where pcurr is the
position of the joint to be normalized, ppar the position of the “parent” joint, and pnorm the
normalized current position:

pnorm = ppar +
pcurr − ppar

µBoneLen
(2)

In other words, the normalized position will be the vector pointing from the “parent”
joint to the joint to be normalized, divided by the average length of the segments.

The “waist” joint is the root of the hierarchy and, therefore, retains its original position.
The joints should be traversed in a hierarchy, starting at the root, to ensure that the joints
above it have their values updated. In the same way as the previous process, the average
length of the segments should be saved for each movement in order to return to the
original values.

Finally, the rotations are adjusted to ensure that the direction vectors between the
parent joint and the child joint are aligned with the respective axis. In this way, the same
configuration of rotations represents the same pose, whether in the dataset of CMU or in
the data returned from Kinect. Figure 6 illustrates an example where the rotation axes
may not be aligned correctly. It is assumed that the direction vector of the “shoulder” joint
should be aligned with the x-axis, and in the initial pose the rotation is (0, 0, 0), as in first
diagram in the figure. There may be cases where other direction vectors have been defined
during the motion capture, as shown in the second diagram in the figure, in which case,
although the pose is visually the same, the angle will not be the same as the previous one
and from the perspective of the neural network it will be a new pose. An offset must be
applied to the rotation in such a way that the x-axis coincides with the direction vector, as
shown in the third diagram. After this, the rotation returns to the correct value.

 

2 

 

 
   Figure 6. Rotation axis correction.

The axis that must be aligned with the direction vectors depends on the type of joint.
These axes have been defined as follows:

• The right arm joints align the x-axis;
• The left arm joints align the negative x-axis;
• The joints from the waist to the head align the y-axis;
• The joints of both legs align the negative y-axis.
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The direction vector is given by the local position of the child joint; in the case of
Figure 6, the vector is the local position of “elbow”. To determine the angle of rotation, the
position is projected onto the respective planes, for example, if the aim is to align the x-axis
then the point is projected onto the x–y plane to rotate in z and onto the x–z plane to rotate in y.

3.2.3. Deep Neural Network

The deep neural network block is used to eliminate noise from the poses captured by
the Kinect. To achieve this, the original poses ground truth and the noisy ones are provided
during the training phase, as illustrated in Figure 7. At this phase, the network will update
its parameters throughout the iterations in order to reconstruct the original poses from the
noisy ones. A ResNet-type neural network [25] is used. 

3 

 

 
   Figure 7. Training data for the neural network.

3.2.4. Noise Function

The Kinect sensor captures pose information with two types of noise:

• Occlusions: The joints move too far from the correct position because they are occluded
by an object or part of the human body at the moment of capture.

• Displacements: Small deviations of the joints from the correct position due to the
sensitivity of the sensor and the environment in which it is located.

In order to simulate this noise in the network’s training data, a noise model is imple-
mented. Occlusions and displacements are randomly generated, where the occlusions are
chosen according to a variable with a uniform distribution and the displacements are based
on a Gaussian distribution with zero mean and adjusted standard deviation.

The occluded joints take the position (0, 0, 0) and rotation (0, 0, 0, 1), while the
displacements move slightly away from the original joint. Figures 8 and 9 illustrate
examples of the two types of noise, where the corrupted joints are shown in red and the
ground truth in green. In Figure 8, the red joint that should overlap the green one has been
moved to the origin (0, 0, 0) to simulate an occlusion, and in Figure 9, the red joints suffer
some deviations to represent displacements.

When a joint is occluded, it is necessary to eliminate the rotation of the “parent” joint,
because the network uses the direction vector to determine the position of the occluded
joint. In the case of Kinect, when there is an occlusion it is impossible to determine the
exact rotation of the ‘parent’ without knowing the position of the ‘child’ joint, leaving
an incorrect value. In this way, the network will return an incorrect position, which is
why it is necessary, in both Kinect and CMU poses, to change the rotation of the parent
joint to [0, 0, 0, 1], so that the network learns to correct occlusions without knowing the
direction vector.
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Figure 8. Pose with generated occlusions.

Figure 9. Pose with generated displacements.

3.2.5. Temporal Filter

The Savitzky–Golay filter [24] smooths data, in order to improve accuracy without
distorting the signal, by convolution with a polynomial function of degree n. Given a set
of points (xj, yj), where j = [1, . . ., n], x is an independent variable and y is the observed
value, the result of the filter is a set of convolutions between the signal and the coefficients
Ci, which depend on the length of the window m and the polynomial defined:

Yj =

m−1
2

∑
i= 1−m

2

Ci ∗ yj+1 ,
m − 1

2
≤ j ≤ n − m − 1

2
(3)

3.3. Network Implementation

As described in Section 3.2 and illustrated in Figure 4 the proposed system starts with
the processing of the CMU dataset. Then, poses are captured with Kinect using Unity.
Following this, the pre-processing of these data is performed. As for the neural network, the
system begins by organizing the data produced followed by the training of the network. In
the tuning process, several parameters are studied, in which the results for different values
and their interpretation are analyzed. During training, the cross-validation method is used
to measure the performance of the model more accurately. The training set is divided into
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10 folds and approximately 10% of the data is used for validation. Finally, the temporal
filter is applied on the sequence of poses returned by the neural network.

The proposed method is implemented in Python using the libraries for data process-
ing and the TensorFlow API [26] to facilitate the implementation of the machine learning
methods used. TensorFlow API has graphics processing unit (GPU) support, significantly
speeding up the network training phase. TensorFlow supports other programming lan-
guages such as JavaScript and C#, ideal for developing applications in the Unity game
engine, which in the context of this project is used to visualize poses in a more interactive
way and detect problems that may occur.

The list of poses is made up of a set of joints which, in turn, are defined by their
position (t = [tx, ty, tz]) and rotation (r = [rx, ry, rz, rw]), represented by quaternions.
Decomposing the pose, the following is obtained:

joint = [tx, ty, tz, rx, ry, rz, rw] (4)

and
pose = [joint1, joint2, . . ., jointn] (5)

that is,

pose = [tx1, ty1, tz1, rx1, ry1, rz1, rw1, . . ., txn, tyn, tzn, rxn, ryn, rzn, rwn] (6)

The fact that the “waist” joint is the origin, means that it always has the same value
[0, 0, 0, 0, 0, 1], so it can be removed, leaving a total of 16 joints. Therefore, the pose is defined
by a vector of 16 ∗ 7 = 112 features.

The data for training the network (CMU poses) are pre-processed once and saved in
the binary format. After loading all the training data, the order of the poses is shuffled so
that the training and validation data are evenly distributed in terms of movement type
(e.g., running or jumping), i.e., so that the two datasets do not contain just one movement
type, as this would skew the results. A file is generated containing the original poses and
three corrupted files with the different types of noise, keeping the order of the poses after
the shuffle function. This avoids processing the data multiple times and guarantees the
same conditions for all models.

In order to implement the ResNet architecture in TensorFlow in a modular way, a class
structure was developed based on sequential blocks that facilitates model management
(saving and loading previous models). In order to support different network architectures,
a base class was created, which implements the general functionalities of the model. The
“ResNetModel” class extends these functionalities and uses the “ResidualBlock” layers in
the sequential model. The “SimpleModel” class follows the same approach but with dense
layers provided by the API. The model settings are indicated in the “HyperParameters”
class in order to group all the parameters in a single object. This structure allows for great
abstraction in the network tuning phase. It can load previous models from the saved
configurations and saved weights, even if “z-score” normalization is used because this is
performed in the model itself, of the “CustomModel” type.

The ResNet architecture is made up of residual blocks which, in turn, contain one or
more layers [27]. The example of defining the residual blocks in [6] is followed, each with
a dense layer and a skip connection without additional layers. In this project, a similar
architecture is implemented, excluding the markers and changing the number of residual
blocks in each layer (dense layer). After testing different configurations, a ResNet of a
residual block with a dense layer of 1000 neurons was obtained; shown in Figure 10.

3.4. User Evaluation

The movements captured with Kinect have no ground truth, making it difficult to see
whether the network can correct these movements. To evaluate the network’s performance,
we asked several users to visually evaluate the results obtained and give us their opinion
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via a questionnaire. This questionnaire also includes 29 different movements for evaluation,
captured with this sensor, in which a video with 3 randomly ordered sequences is shown
for each one. One of the sequences is taken directly from the sensor (without applying the
deep neural network) and the other two are generated with the variants of the proposed
denoising system with the best results.

For each movement, the participant is asked to select the sequence that represents the
most natural movement. The questionnaire was sent to each participant via the Google
Forms application, so that they could fill it in individually. In this work, the privacy and
potential misuse of the poses captured did not represent any ethical issue since anonymous
body models from the CMU dataset were used. The models were used to animate virtual
characters without any connection to the users.

 

4 

 

 

Figure 10. Network architecture that obtained the best results for the number of layers and neurons.

4. Results

This section presents and discusses the results obtained from the tests carried out to
validate the proposed model. These tests are divided into two phases. In the first phase, the
model is evaluated with a test set of CMU poses, different from the poses used to train the
deep neural network, to assess its behavior in relation to the same skeletal structure that
was trained. This evaluation is carried out using the mean absolute error (MAE) metric
to measure the error between the original poses and those returned by the network. This
metric is used because it is more robust to the presence of outliers, as present in the noise
models proposed for occlusions and displacements. Tables and figures with the results
refer to “corrupt” as the correct model with the errors introduced by the corrupt function.
At this stage, tests are also carried out to check which of the types of noise introduced in
the training is most appropriate (to simulate the real noise) and the differences between the
number of features used, i.e., the differences between the model trained with the positions
and rotations simultaneously and individually. In a second phase, the model is evaluated
with a set of poses from Kinect, to check whether the model is able to correct the poses of
the original Kinect skeleton, knowing that it has been trained with a similar structure. As
the ground truth of the poses captured by Kinect was not available, it was decided to carry
out a perceptual evaluation with 12 users. In this evaluation, users were asked to choose
one of three different animations of the same movement. The first animation was obtained
without applying the proposed model and the others with the application of two variants
of the proposed model to correct the errors. The model used in the tests was trained with
885,823 training samples over 800 epochs. As for the test data, there were 88,582 samples,
different from those used in the training.
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4.1. CMU Data

In this phase, three noise situations are tested:

1. Noise caused by occlusions and displacements;
2. Noise caused by occlusions;
3. Noise caused by displacements.

The aim is to assess whether it is beneficial to train two models separately, one with
occlusions and one with displacements. Figure 11 shows the errors of the poses returned
by the model (in blue) trained with occlusions and displacements, as well as the error
introduced in the test poses (in red). In the first graph of the figure, both types of noise
were added to the test poses, in the second graph only occlusions were added, and in the
third only displacements. Figures 12 and 13 show the same type of information but for
models trained only with occlusions and displacements, respectively.

Figure 11. Tests with model trained with occlusions and displacements (shifts).

Figure 12. Tests with model trained with occlusions.

The graphs, summarized in Table 2, show that the noise is significantly reduced, with
the exception of the displacements, for which, although they try to smooth out the high
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frequencies, the total error increases. This is because in most poses the corruption function
moves the joints to another possible position and the network tends to learn to always move
the joints regardless of position. As a result, there will be more displacements and the error
ends up being greater. However, this does not mean that the poses are not visually more
correct. Figure 14 illustrates the correctness of a pose with displacements that is closer to the
ground truth than the corrupt pose. The model trained exclusively with occlusions has the
lowest error regardless of the type of noise applied to the test data. In Figure 15, it can be seen
that this model manages to correct the occluded pose, making it similar to the true one.

Figure 13. Tests with model trained with displacements.

Figure 14. Displacement correction. Green: true pose; red: corrupted pose; blue: predicted pose.

Figure 15. Correction of occlusions. Green: true pose; red: corrupted pose; blue: predicted pose.
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Table 2. MAE error for different types of noise in training and testing.

CMU Test Data

Occlusions and Displacements Occlusions Displacements

Model Trained
Occlusions and Displacements 0.0461 0.0420 0.0334

Occlusions 0.0383 0.0239 0.0225
Displacements 0.0766 0.0734 0.0303

Corrupt 0.0724 0.0618 0.0127

4.2. Kinect Data

For the Kinect data, the network is unable to correct the poses with the same precision
as the CMU tests. Figures 16–21 show the obtained results, where “O” refers to the
model trained with noise caused by occlusions; “O_S”, noise caused by occlusions and
displacements; and “S”, displacements.

Figure 16. Network results for Kinect test data with the corruption function implemented. Green:
true pose; red: corrupted pose; blue: pose predicted by the network trained with the different types
of noise.

Figure 17. Network results for a Kinect pose without additional error. Green: true pose; red:
corrupted pose; blue: pose predicted by the network trained with the different types of noise.

Despite the transformations made to approximate the structures of the two skeletons
(CMU and Kinect), the positions of the joints are not exactly the same, which will influence
the result of the network. A set of poses captured by Kinect was tested and occlusions and
displacements were introduced with the implemented corruption function. Table 3 shows
that in any of the training conditions, the error produced by the network is never smaller
than the error introduced.

In this case, the displacement model causes the least noise, but that does not mean that
the poses are visually closer to the original sequence. In order to understand the changes
made by the network, the poses were observed in Unity (Figure 16). After testing the
three models trained, the one that came closest to the original was the model trained with
both types of noise. It managed to correct the position of the joint along with its rotation,
unlike the model trained with occlusions, which although it seemed to achieve the right
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positions, failed with the rotations. Although the displacement model is not suitable for
correcting noise, it does not cause as many changes to the joints when the supplied pose is
noise-free, as shown in Figure 17. For this reason, and the fact that the other two models
are not accurate, the total error of this model is the smallest.

Figure 18. Network results for noisy Kinect data. Red: corrupted pose; blue: pose predicted by the
network trained with the different types of noise.

Figure 19. Net results, only with joint position information, for noisy Kinect data. Red: corrupted
pose; blue: pose predicted by the network trained with the different types of noise.

Figure 20. Network results, with only joint rotation information, for noisy Kinect data. Red: corrupted
pose; blue: pose predicted by the network trained with the different types of noise.

After that, a real Kinect movement was tested, where there may occur occlusions and
displacements. Since there was no ground truth information, the poses were observed in
Unity where it was concluded that the predicted result was worse than the poses corrupted
by the implemented function. Figure 18 shows that modeling the two types of noise
simultaneously produces a pose that is closer to reality.
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Figure 21. Network results for noisy Kinect data. Red: corrupted pose; blue: pose predicted by the
network trained with/without the Kinect data.

Table 3. MAE error for Kinect test data.

Kinect Test Data

Occlusions and Displacements Occlusions Displacements

Model Trained
Occlusions and Displacements 0.0930 0.0894 0.0830

Occlusions 0.1096 0.0874 0.0928
Displacements 0.1012 0.0989 0.0647

Corrupt 0.0621 0.0522 0.0122

The network trained only with the positions of the joints also returns only the positions.
This is undesirable because without the rotations we do not know the direction of the
segments, resulting in the skeleton in Figure 19.

Unlike the model above, it is possible to train the network only with rotations as
long as the position and rotation of the initial pose are known. From there, the trans-
formations of the rotations are applied hierarchically. In Figure 20, none of the models
were able to accurately predict the rotation of the occluded arm. Nevertheless, the models
trained individually present more natural poses than the model trained with positions and
rotations simultaneously.

The use of the temporal filter on the data returned by the network helps to reduce noise,
especially the jittered caused by the network. The filter is used to add temporal information
to the movements. It is a simple filter, favoring real time but with limitations for more
complex movements (e.g., movements with acceleration). In addition to the improvements
in the Kinect poses, the error is still higher than the error introduced (Tables 4 and 5).

Table 4. MAE error for different types of noise in training and testing with temporal filter.

CMU Test Data—Temporal Filter

Occlusions and Displacements Occlusions Displacements

Model Trained
Occlusions and Displacements 0.0397 0.0382 0.0314

Occlusions 0.0289 0.0218 0.0172
Displacements 0.061 0.0599 0.0283

Corrupt 0.0724 0.0618 0.0127
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Table 5. MAE error for Kinect test data with temporal filter.

Kinect Test Data—Temporal Filter

Occlusions and Displacements Occlusions Displacements

Model Trained
Occlusions and Displacements 0.0869 0.0860 0.0826

Occlusions 0.0923 0.0814 0.0855
Displacements 0.0868 0.0860 0.0655

Corrupt 0.0621 0.0522 0.0122

The difference in the results between the transformed CMU poses and the Kinect
poses may be due to the fact that this transformation is not appropriate. For this reason,
we added some poses acquired with the Kinect, without the presence of occlusions, to the
training data, so that the network could learn the real structure of the Kinect skeleton. This
procedure reduces the total error by 6.3% compared to the previous model, considering the
training data to only have rotations in the joints. As for the model trained simultaneously
with position and rotation, there is a slight increase in the total error. However, it was
observed that this model predicts poses that are visually closer to the real ones. Figure 21
shows an example of this situation, where the model trained with some Kinect data returns
a pose closer to reality and with smaller deviations, especially in the position of the head
and right knee.

It can, therefore, be concluded that adding Kinect poses to the training data is beneficial
to the network even if the total error does not demonstrate it. It should be noted that in the
results obtained for the Kinect poses using only CMU data in training the average error
is small, only 0.03 (difficult to visualize) more than the error introduced by the corrupt
function (Table 3). Naturally, the model has more difficulties with movements unknown to
the network, but manages to eliminate some of the errors.

4.3. Evaluation with Users

Since there is no ground truth for the movements captured with Kinect, a visual user
evaluation was provided. Therefore, 29 different movements captured with this sensor
were presented and the participants gave their opinion through a questionnaire (full version
of the questionnaire at https://forms.gle/kfZ4rr2nxkr2pg5AA, accessed on 28 February
2024). For each movement, a video with three randomly ordered sequences was shown.
One of the sequences was taken directly from the sensor (without applying the deep neural
network) and the other two were generated from the two models that showed the most
natural poses visually, namely, the model trained with rotations and the model trained with
rotations and positions. Both trained with occlusions and displacements. In the training
of these two models, some Kinect poses were introduced which, as previously proven,
improves the result along with the temporal filter applied.

For each movement, the participant was asked to select the sequence that represented
the most natural movement. The tests were carried out on a group of 12 participants with
computer science knowledge and 4 of them with experience in animation and 3D modeling.
In order to reinforce the statistics, it would have been desirable to have a greater number of
participants. However, the aim of this initial study was to see if visual validation could be
a way forward in the future. Therefore, 12 participants was a reasonable number for the
proposed objective. The questionnaire was sent to each participant via the Google Forms
application, so that they could fill it in individually.

The result shown in Table 6 proves that the network has a positive effect on correct-
ing Kinect poses. About 45% of the answers point to the “ResNet” sequence (proposed
model trained with positions and rotations) and about 35% to “ResNetRot” (proposed
model trained with rotations only) as the most natural sequence. Checking the two most
natural sequences proves that the two models can generally improve the poses acquired
from Kinect.

https://forms.gle/kfZ4rr2nxkr2pg5AA
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Table 6. General questionnaire result.

Most Natural Second Most Natural

Kinect 67 107
ResNet (Rotations and Positions) 157 116

ResNetRot (Rotations) 124 125

In order to analyze the behavior of the models when faced with different levels
of occlusion, the movements were grouped into five scales according to the number of
occlusions, where scale 1 corresponds to the lowest number of occlusions in the sequence
and scale 5 to the highest number. The graph in Figure 22 shows the votes of users
for each movement (“Kinect”, “ResNet”, “ResNetRot”) for the different occlusion scales.
The number of votes in each scale has been normalized from 0 to 100 due to the different
number of movements between them. It can be seen that in movements with few occlusions
both networks have the same vote, considerably outperforming the original Kinect poses.
At intermediate occlusion levels, 2 and 3, “ResNet” achieves the best results, followed
by “ResNetRot”. The latter has a great impact on the poses with the highest number of
occlusions, but surprisingly underperforms at the maximum level, in which case none of
the networks can improve the Kinect poses.

Overall, the model trained with the positions and rotations seems to be the most
suitable, which was expected given that it contains more features for training, although the
sequences still show unnatural poses.

Figure 22. Results of the questionnaire in relation to the level of occlusion of the animations. Occlusion
at scale 1 groups all movements with few occlusions. Occlusion at scale 5 groups all movements with
the highest number of occlusions.

5. Conclusions and Future Work

The use of deep neural networks to solve denoising problems in motion capture
applications shows promising results at the cost of a large set of training data.

The deep neural network-based system implemented manages to considerably reduce
the noise of the poses in movements that have the same structure as those used in the
training phase, i.e., both the training and test sequences are adapted from CMU dataset
poses. However, tests with the Kinect sensor poses show that the network does not adapt
as well to skeletons with a different architecture, even with the transformations between
representations/models. The fact that the joints in the training data are not perfectly aligned
with the joints in the Kinect skeleton negatively influences the prediction. This problem can
be slightly mitigated by adding correct poses from the Kinect sensor, so that the network
has some knowledge of the structure of the skeleton.

The obtained results do not always allow the best model to be determined. As
explained in Section 4, the model trained with the displacements has a higher total error
than expected, but is able to visually correct the corrupted CMU poses. It is difficult to
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determine which type of noise is most appropriate. According to the error results for
the CMU tests, the model trained exclusively with occlusions achieves the best results
in all three situations (1—test data with occlusions and displacements, 2—test data with
occlusions, and 3—test data with displacements).

For the Kinect test data, each model serves its purpose, i.e., it best corrects the error
for which it was trained. Although the total sum of the errors for these data is always
greater than expected, the user tests presented in Section 4 show that the prediction made
by the network, together with the application of the temporal filter, results in more natural
movements, even if they present incorrect poses.

For future work, we intend to follow another process for adapting the skeleton, which
consists of inverting this transformation, i.e., converting the Kinect skeleton to that of
the CMU by adding the missing joints instead of eliminating them. Another possibility
would be to build a dataset with the real skeleton of the Kinect sensor from three cameras
to avoid occlusions in the joints. Finally, we intend to test the implemented system in a
virtual/augmented reality application in order to analyze its performance in real time and
its impact on the user experience.
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