
Citation: Olabanjo, O.; Wusu, A.;

Asokere, M.; Afisi, O.; Okugbesan, B.;

Olabanjo, O.; Folorunso, O.; Mazzara,

M. Application of Machine Learning

and Deep Learning Models in Prostate

Cancer Diagnosis Using Medical

Images: A Systematic Review.

Analytics 2023, 2, 708–744. https://

doi.org/10.3390/analytics2030039

Academic Editor: Ping-Feng Pai

Received: 14 August 2023

Revised: 10 September 2023

Accepted: 14 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Application of Machine Learning and Deep Learning
Models in Prostate Cancer Diagnosis Using Medical
Images: A Systematic Review
Olusola Olabanjo 1,2,* , Ashiribo Wusu 3 , Mauton Asokere 2, Oseni Afisi 4, Basheerat Okugbesan 3,
Olufemi Olabanjo 5, Olusegun Folorunso 5 and Manuel Mazzara 6

1 Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA
2 Department of Computer Science, Lagos State University, Lagos 102101, Nigeria
3 Department of Mathematics, Lagos State University, Lagos 102101, Nigeria
4 Department of Philosophy, Lagos State University, Lagos 102101, Nigeria
5 Department of Computer Science, Federal University of Agriculture, Abeokuta 2240, Abeokuta, Nigeria
6 Institute of Software Development and Engineering, Innopolis University, 420500 Innopolis, Russia
* Correspondence: olola57@morgan.edu

Abstract: Introduction: Prostate cancer (PCa) is one of the deadliest and most common causes of
malignancy and death in men worldwide, with a higher prevalence and mortality in developing
countries specifically. Factors such as age, family history, race and certain genetic mutations are
some of the factors contributing to the occurrence of PCa in men. Recent advances in technology and
algorithms gave rise to the computer-aided diagnosis (CAD) of PCa. With the availability of medical
image datasets and emerging trends in state-of-the-art machine and deep learning techniques, there
has been a growth in recent related publications. Materials and Methods: In this study, we present a
systematic review of PCa diagnosis with medical images using machine learning and deep learning
techniques. We conducted a thorough review of the relevant studies indexed in four databases (IEEE,
PubMed, Springer and ScienceDirect) using the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines. With well-defined search terms, a total of 608 articles
were identified, and 77 met the final inclusion criteria. The key elements in the included papers
are presented and conclusions are drawn from them. Results: The findings show that the United
States has the most research in PCa diagnosis with machine learning, Magnetic Resonance Images
are the most used datasets and transfer learning is the most used method of diagnosing PCa in recent
times. In addition, some available PCa datasets and some key considerations for the choice of loss
function in the deep learning models are presented. The limitations and lessons learnt are discussed,
and some key recommendations are made. Conclusion: The discoveries and the conclusions of this
work are organized so as to enable researchers in the same domain to use this work and make crucial
implementation decisions.

Keywords: machine learning; deep learning; prostate cancer; systematic review; PRISMA; CNN

1. Introduction

Prostate cancer (PCa) is the second most lethal and prevalent non-cutaneous tumor in
males globally [1]. Published statistics from the American Cancer Society (ACS) show that
it is the most common cancer in American men after skin cancer, with 288 and 300 new
cases in 2023, resulting in about 34,700 deaths. By 2030, it is anticipated that there will
be 11 million cancer deaths, which would be a record high [2]. Worldwide, this type of
cancer affects many males, with developing and underdeveloped countries having a higher
prevalence and higher mortality rates [3]. PCa is a type of cancer that develops in the
prostate gland, a small walnut-shaped gland located below the bladder in men [4]. The
male reproductive system contains the prostate, which is a small gland that is located
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under the bladder and in front of the rectum. It surrounds the urethra, which is the tube
that carries urine from the bladder out of the body. The primary function of the prostate
(Figure 1) is to produce and secrete a fluid that makes up a part of semen, which is the fluid
that carries sperm during ejaculation [5]. The development of PCa in an individual can be
caused by a variety of circumstances including age (older men are more likely to develop
prostate cancer), family history (having a close relative who has prostate cancer increases
the risk), race (African American males are more likely to develop prostate cancer) and
specific genetic mutations [6,7].
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The recent advances in sophisticated computers and algorithms in recent decades
have paved the way for improved PCa diagnosis and treatment [8]. Computer-aided diag-
nosis (CAD) refers to the use of computer algorithms and technology to assist healthcare
professionals in the prognosis and diagnosis of patients [9]. CAD systems are designed to
serve as Decision Support (or Expert) Systems, which analyze medical data, such as images
or test results, and provide experts with additional information or suggestions to aid in the
interpretation and diagnosis of various medical conditions. They are commonly used in
medical imaging fields to detect anomalies or assist in the interpretation and analysis of
medical images such as X-rays, Computed Tomography (CT) scans, Magnetic Resonance
Imaging (MRI) scans and mammograms [10]. These systems use pattern recognition, ma-
chine learning algorithms and deep learning algorithms to identify specific features or
patterns that may indicate the presence or absence of a disease or condition [11]. It can
also help radiologists by highlighting regions of interest (ROI) or by providing quantitative
measurements for further analysis. Soft computing techniques play a major role in decision
making across several sectors of the field of medical image analysis [12,13]. Deep learning,
a branch of artificial intelligence, has shown promising performance in the identification of
patterns and the classification of medical images [14,15].

Several studies have investigated some CAD solutions to identify PCa by analyzing
medical images as a decision support tool for an effective and efficient diagnosis process,
easing these tasks as well as reducing human errors and effort. Also, there is an avalanche
of review and survey papers published in this area that summarize and organizes recent
works and aid in the understanding of the state-of-the-art in this field, discussing the trends
and recommending future directions.

This study presents a guided systematic review of the application of these ML and
DL techniques in the diagnosis of PCa, especially their applications in the process of
segmentation, cancer detection, the assessment of lesion aggressiveness, local staging and
pre-treatment assessment, among others. We present, evaluate and summarize various
studies from our selected databases, give insights into the use of different datasets and
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different imaging modalities, explore the trends in this area, analyze the state-of-the-art
deep learning architectures and provide derivations, taxonomies and summaries based on
these observations and some limitations, open challenges and possible future directions.
Machine learning specialists, medics and decision makers can benefit from this study
as it will help them determine which machine learning model is appropriate for which
characteristics of the dataset as well as gain insights into future directions for research
and development. Figure 2 shows the trend of publications on the subject matter from the
previous ten years to date, which was obtained from a tailored search on Google Scholar
(https://scholar.google.com accessed on 4 July 2023) with the query ‘machine learning
deep learning “prostate cancer”-review’, and filtered by year.
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These two figures show that although there is an increasing wave of research in this
subject matter, there are not enough systematic review studies to match up with this ever-
rising trend. This justifies that this study is highly relevant given the experiment/review
study ratio in the past decade.

https://scholar.google.com
https://scholar.google.com
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1.1. Related Works

Many review and survey papers have investigated the application of machine learning
and deep learning models to support the diagnosis and decision-making process of PCa.
These papers have addressed the use of several deep learning models on various datasets
and image modalities and presented the findings of the authors in those respective papers.
Table 1 summarizes the review papers identified as relevant to our aim in this study as well
as their findings so far.

Table 1. Some selected related systematic review and survey articles for deep learning diagnosis of
PCa in clinical patients.

Ref. Year Articles Included Work Conducted

[16] 2019 43

Authors investigated current and future applications of ML and DL
urolithiasis, renal cell carcinoma and bladder and prostate cancers.
Only PubMed database was used. It was concluded in the study that
machine learning techniques outperform classical statistical methods.

[17] 2020 28
Study investigated deep learning methods for CT and MRI images for
PCa diagnosis and analysis. It was concluded that most deep learning
models are limited by the size of the dataset used in model training.

[18] 2021 100

Study investigated 22 machine learning-based and 88 deep
learning-based segmentation of only MRI images. Authors also
presented popular loss functions for the training of these models
and discussed public Pca-related datasets.

[19] 2022 8

Authors reviewed eight papers on the use of biparametric MRI
(bpMRI) for deep learning diagnosis of clinically significant Pca. It
was discovered that although deep learning is highly performing in
terms of accuracy, there is lower sensitivity when compared to
human radiologists. Dataset size has also been identified as a major
limitation in these deep learning experiments.

[20] 2020 27
Embase and Ovid MEDLINE databases were searched for
application of ML and DL for differential diagnosis of Pca using
multi-parametric MRI.

[21] 2022 29 Authors investigated the current value of bpMRI using ML and DL
in the grading, detection and characterization of Pca.

[22] 2022 24

Authors reviewed the role of deep learning in Pca management.
Study also recommended that focus should be placed on model
improvement in order to make these models verifiable as well as
clinically acceptable.

Review articles have conducted tremendous work in the investigation of the roles
of ML and DL models in clinically significant prostate cancer (csPCa). However, some
limitations are identified. First, the review articles that met most authors’ final inclusion
criteria are very small compared to the hundreds of articles released on a weekly basis.
Second, most studies focused on a single image modality, whereas there are other imaging
modalities that should be included. Some studies also used a single database as a reference
search, which we know cannot provide a representative study of the subject matter. Also,
some studies did not discuss major considerations such as the choice of dataset, the choice of
image modalities, the choice of ML/DL models, hyperparameter tuning and optimization,
among others. These are some of the lapses that our work seeks to address.

1.2. Scope of Review

This study aims to address the following research questions in the context of diag-
nosing PCa with ML and DL techniques. This can be utilized by researchers and medics
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to obtain a comprehensive view of the evolution of these techniques, datasets and imag-
ing modalities and the effectiveness of these techniques in PCa diagnosis. The following
research questions (RQs) are considered in this study:

RQ1: What are the trends and evolutions of this study?
RQ2: Which ML and DL models are used for this study?
RQ3: Which datasets are publicly available?

RQ4:
What are the necessary considerations for the application of these artificial
intelligence (AI) techniques in PCa diagnosis?

RQ5: What are the limitations that were identified so far by the authors?
RQ6: What are the future directions for this research?

We also investigated the verifiability of these studies by checking whether a medic
or radiologist was one of the contributors or if it was stated that the results of the model
were verified by one. We also included a citation metric and impact index in our work to
measure the impact of the reviewed articles.

1.3. High-Level Structure of This Study

This study is organized as indicated in Figure 4. The first section presents a general
overview of this study, the related review works and the scope of this study. Section 2
discusses the method of review employed in this paper. Section 3 engages in preliminary
discussions concerning imaging modalities, the risks of PCa and general deep learning
architecture for PCa diagnosis. Section 4 presents a summary table of papers that meet the
inclusion criteria of this study with a comparative analysis of the trends, datasets, methods,
techniques and journals.
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Section 5 discusses some popular deep learning approaches and gives guidelines for
the choice of individual techniques and optimization considerations as well as the choice of
loss function. Section 6 presents a discussion of the findings. We also discuss the identified
limitations, lessons learned and recommendations. The final section concludes this study.
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2. Methods

This review paper explores, investigates, evaluates and summarizes findings in the lit-
erature that discuss PCa diagnosis with ML and DL techniques and image datasets, thereby
equipping readers with a wholistic view of the subject matter, summaries of different tech-
niques, datasets and models, as well as various optimization techniques available for model
training. The authors will conduct various possible comparisons, discuss challenges and
limitations and suggest future work directions and areas of improvement. The Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [23] guideline was
used for conducting this review.

2.1. Database Search and Eligibility Criteria

In this systematic review, we constructed a search strategy and used it to scout four
major databases (ScienceDirect, PubMed, Springer and IEEE) in search of up-to-date, relevant
research publications on the research study of using ML and DL models to clinically diagnose
csPCa. Google Scholar was used as the secondary resource in the preliminary and expository
discussions. The timeframe for the investigation is the 2015–2023 period. These sources were
selected because of their extensive publications of research in this area of study.

2.2. Review Strategy

The review process involved study selection, research design, search strategy, infor-
mation sources and data collection techniques. It also involved an evaluation of papers
that complied with the initial inclusion and exclusion criteria. Editorials, comments, let-
ters, preprints and databases were not included in the four categories, and other types of
manuscripts were not accepted. The search strategy was composed as follows: (a) construct
search terms by identifying major keywords, required action and expected results; (b) de-
termine the synonyms or alternative words for the major keywords; (c) establish exclusion
criteria to make exclusions during search and (d) apply Boolean operators to construct the
required search term.

Results for (a):
Deep Learning Machine Learning Significant Prostate Cancer Artificial
Intelligence Prediction Diagnosis;

Results for (b):
Prediction/Diagnosis/Classification Machine/Deep Prostate
Cancer/PCa/csPCa;

Results for (c):
Review, systematic review, preprint, risk factor, treatment, biopsy, Gleason
grading, DRE;

Results for (d): a, b and c combined using AND OR.

In this review, publications were chosen from peer-reviewed works in the literature by
conducting a search using a generated search phrase (the final search terms used in this
study to query our database sources were (“ Multiparametric-MRI “ OR Machine Learn-
ing ” OR “Deep Learning” OR “ANN” OR “AI” OR “Prostate Cancer”) intitle:”Prostate
Cancer” source: “<Springer/IEEE/PubMed/ScienceDirect>“) in Science Direct, Springer,
IEEE and PubMed. Conference proceedings, journals, book chapters and whole books
are all examples of vetted resources. The initial number of results returned was 608; of
those, 543 fulfilled the initial selection criteria and 77 fulfilled the final requirements. The
studies were appropriately grouped. Figure 5 shows the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses for scoping reviews (PRISMA-ScR) flowchart for
study selection.

Our exclusion criteria included duplicates, preprints, review articles, opinions and
commentaries, editorials, non-English papers, irrelevant titles, irrelevant contents, irrele-
vant techniques and date of publication.
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2.3. Characteristics of Studies

The characteristics of the 77 reviewed articles are given in Figure 6. The outer later is
the distribution of the image modalities, followed by the article type, database and total
number of articles reviewed.
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2.4. Quality Assessment

Most studies failed to satisfy standards in at least one of the six quality criteria exam-
ined. Limited sample size, an inadequate scientific strategy and failure to disclose results
for computational techniques were the most frequently observed issues regarding lack of
quality throughout the investigations.

2.5. Data Sources and Search Strategy

We searched the four selected databases for studies published before July 2023 but
not earlier than 2015. Keywords from subject headings or titles or abstracts of the studies
were searched for with the help of Boolean operators (and/or) with language restricted to
English. In addition, we reviewed the reference lists of primary studies and review articles.

2.6. Inclusion and Exclusion Criteria

Research papers in which ML and DL approaches were applied to predict and char-
acterize PCa were reported. The included publications document the AI technique(s)
used and PCa image analysis problem addressed in this article. Articles dealing with PCa
key datasets and associated analysis techniques were also included in the study selection.
Articles in preprints, not published in our selected databases, opinions, commentaries
and non-English papers were all excluded. Editorials, narrative review articles, case stud-
ies, conference abstracts and duplicate publications were all discarded from the analysis.
Articles that discuss similar techniques and results were ignored.

2.7. Data Extraction

The full texts of the qualified papers chosen for review were acquired, and the review-
ers independently collected all study data, resolving disagreements via consensus. The
references, year of publication, study setting, ML approach, the imaging modality used or
recommended, performance measures used and accuracy attained were all extracted for
every included paper, and comparative analyses were conducted on the extracted dataset.

2.8. Data Synthesis

The included studies were analyzed with respect to the types of models employed,
datasets used, preprocessing techniques, features extracted and performance metrics re-
ported. Some ML/DL models such as Convolutional Neural Networks (CNNs) perform
better, are scalable and are more adaptive than others, especially in terms of the different
modalities in medical image analysis. Performance evaluation was conducted through a
spectrum of metrics including sensitivity, specificity, accuracy and area under the receiver
operating characteristic curve (AUC-ROC).

2.9. Risk of Bias Assessment

Our study assessment aims to evaluate the methodological quality and potential
sources of bias that could influence the reported findings. For instance, studies that rely
solely on single-center datasets or imbalanced class distributions may introduce biases
that affect the model generalizability. Additionally, the lack of clear documentation of
preprocessing steps, considerations for model-fitting problems and hyperparameter tuning
could hinder reproducibility.

3. Preliminary Discussions
3.1. Imaging Modalities

Prostate imaging refers to various techniques and procedures used to visualize the
prostate gland for diagnostic and treatment purposes. These imaging methods help in
evaluating the size, shape and structure of the prostate, as well as detecting any abnormali-
ties or diseases, such as prostate cancer [24,25], and they include Transrectal Ultrasound
(TRUS) [26], Magnetic Resonance Imaging (MRI) [27], Computed Tomography (CT) [28],
Prostate-Specific Antigen (PSA) [29], Prostate-Specific Membrane Antigen (PET/CT) [30]
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and bone scans [31]. A TRUS involves inserting a small probe into the rectum, which emits
high-frequency sound waves to create real-time images of the prostate gland. A TRUS is
commonly used to guide prostate biopsies and assess the size of the prostate [26,32]. MRI,
one of the most common prostate imaging methods, uses a powerful magnetic field and
radio waves to generate detailed images of the prostate gland. It can provide information
about the size, location and extent of tumors or other abnormalities. A multiparametric
MRI (mpMRI) combines different imaging sequences to improve the accuracy of prostate
cancer detection [33,34]. A CT scan uses X-ray technology to produce cross-sectional images
of the prostate gland. It may be utilized to evaluate the spread of prostate cancer to nearby
lymph nodes or other structures. PSMA PET/CT imaging is a relatively new technique
that uses a radioactive tracer targeting PSMA, a protein that is highly expressed in prostate
cancer cells [35]. It provides detailed information about the location and extent of prostate
cancer, including metastases. Bone scans are often performed in cases where prostate
cancer has spread to the bones. A small amount of radioactive material is injected into the
bloodstream, which is then detected by a scanner [31]. The scan can help to identify areas
of bone affected by cancer. PSA (density mapping) combines the results of PSA blood tests
with transrectal ultrasound measurements to estimate the risk of prostate cancer. It helps
to assess the likelihood of cancer based on the size of the prostate and the PSA level [36].
The choice of imaging technique depends on various factors, including the specific clinical
scenario, the availability of resources and the goals of the evaluation [37,38].

3.2. Risks of PCa

The risk of PCa varies in men depending on several factors, and identifying these
factors can aid in the prevention and early detection of PCa, personalized healthcare, re-
search and public health policies, genetic counseling and testing and lifestyle modifications.
The most common clinically and scientifically verified risk factors include age, obesity and
family history [39,40]. In low-risk vulnerable populations, the risk factors include benign
prostatic hyperplasia (BPH), smoking, diet and alcohol consumption [41]. Although PCa
is found to be rare in people below 40 years of age, an autopsy study on China, Israel,
Germany, Jamaica, Sweden and Uganda showed that 30% of men in their fifties and 80%
of men in their seventies had PCa [42]. Studies also found that genetic factors, a lack of
exercise and sedentary lifestyles are cogent risk factors of PCa, including obesity and an
elevated blood testosterone level [43–46]. The consumption of fruits and vegetables, the
frequency of high-fat meat consumption, the level of Vitamin D in blood streams, choles-
terol level, infections and other environmental factors are deemed to contribute to PCa
occurrence in men [47,48].

3.3. Generic Overview of Deep Learning Architecture for PCa Diagnosis

Deep learning (DL) architectures have shown promising effectiveness and relative
efficiency in PCa diagnosis due to their ability to analyze complex patterns and extract
features from medical imaging data [13]. One commonly used deep learning architecture
for cancer diagnosis is Convolutional Neural Networks (CNNs). CNNs are particularly
effective in image analysis tasks, including medical image classification, segmentation,
prognosis and detection [49]. Deep learning, given its ever-advancing variations, has
recorded significant advancements in the analysis of cancer images including histopathol-
ogy slides, mammograms, CT scans and other medical imaging modalities. DL models can
automatically learn hierarchical representations of images, enabling them to detect patterns
and features that are indicative of cancer. They are also trained to classify PCa images into
different categories or subtypes. By learning from labeled training data, these models can
accurately classify new images, aiding in cancer diagnosis and subtyping [50].

Transfer learning is often employed in PCa image analysis. Pre-trained models, such
as CNNs trained on large-scale datasets like ImageNet, are fine-tuned or used as feature
extractors for PCa-related tasks. This approach leverages the learned features from pre-
training, improving performance even with limited annotated medical image data. One
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image dataset augmentation framework is a Generative Adversarial Network (GAN).
GANs can generate realistic synthetic images, which can be used to supplement training
data, enhance model generalization and improve the performance of cancer image analysis
models. The performance and effectiveness of deep learning models for PCa image analysis,
however, depend on various factors, including the quantity and quality of labeled data, the
choice of architecture, the training methodology and careful validation of diverse datasets.

The key compartments in a typical deep CNN model for PCa diagnosis, as shown in
Figure 7, include the convolutional layers, the pooling layers, the fully connected layers,
the activation functions, the data augmentation and the attention mechanisms [51,52]. The
convolutional layers are the fundamental building blocks of CNNs. They apply filters or
kernels to input images to extract relevant features. These filters detect patterns at differ-
ent scales and orientations, allowing for the network to learn meaningful representations
from the input data. The pooling layers downsample feature maps, reducing the spatial
dimensions while retaining important features. Max pooling is a commonly used pooling
technique, where the maximum value in each pooling window is selected as the representa-
tive value [53]. The fully connected layers are used at the end of CNN architectures to make
predictions based on the extracted features. These layers connect all the neurons from the
previous layer to the subsequent layer, allowing for the network to learn complex relation-
ships and make accurate classifications. Activation functions introduce non-linearity into
the CNN architecture, enabling the network to model more complex relationships. Com-
mon activation functions include ReLU (Rectified Linear Unit), sigmoid and tanh [54,55].
Transfer learning involves leveraging pre-trained CNN models on large datasets (such as
ImageNet, ResNet, VGG-16, VGG-19, Inception-v3, ShuffleNet, EfficientNet, GoogleNet,
ResNet-50, SqueezeNet, etc.) and adapting them to specific medical imaging tasks. By
using pre-trained models, which have learned general features from extensive data, the
model construction time can be saved, as well as computational resources, and can achieve
good performance even on smaller medical datasets. Data augmentation techniques, such
as rotation, scaling and flipping, can be employed to artificially increase the diversity of the
training data. Data augmentation helps to improve the generalization of a CNN model by
exposing it to variations and reducing overfitting. Attention mechanisms allow for the net-
work to focus on relevant regions or features within the image. These mechanisms assign
weights or importance to different parts of the input, enabling the network to selectively
attend to salient information [56,57].

Vision Transformers (ViTs) [58–60] are a special type of deep learning architecture,
which, although originally designed for natural language processing (NLP) tasks, has
shown promising performances for medical image processing. They consist of an encoder,
which typically comprises multiple transformer layers. The authors of [61] studied the
use of ViTs to perform prostate cancer prediction using Whole Slide Images (WSIs). A
patch extraction from the detected region of interest (ROI) was first performed, and the
performance showed promising results. A novel artificial intelligent transformer U-NET
was proposed in a recent study [62]. The authors found that inserting a Visual Transformer
block between the encoder and decoder of the U-Net architecture was ideal to achieve the
lowest loss value, which is an indicator of better performance. In another study [63], a
3D ViT stacking ensemble model was presented for assessing PCa aggressiveness from
T2w images with state-of-the-art results in terms of AUC and precision. Similar work was
presented by other authors [64,65].
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4. Results
Review Summary of Relevant Papers

In this section, we present a table summarizing the core contents of the papers that
met our final inclusion criteria. The overall search captured 77 papers. The distribution
of these publications among the four databases consulted is indicated in Table 2. PubMed
serves as a mop-up database for the other three because some papers that were published
elsewhere are also indexed in PubMed, which form a part of the removed duplicates, which
was explained in our PRISMA-ScR in Figure 5. The figure indicates that ScienceDirect has
the most papers on the subject matter.

Table 2. Distribution of publications included in the study according to databases consulted after
screening.

SN Databases URL Count % Count

1 IEEE Xplorer https://ieeexplore.ieee.org 16 20.78

2 Springer https://link.springer.com 23 29.87

3 ScienceDirect https://sciencedirect.com 29 37.66

4 PubMed https://pubmed.ncbi.nlm.nih.gov/ 9 11.69

Tables 3–6 highlight, for each database considered, the year in which the study was
conducted, the imaging modalities, the ML/DL models employed in the study, the problem
addressed, the reported performance metrics and scores, the reported hyperparameter

https://ieeexplore.ieee.org
https://link.springer.com
https://sciencedirect.com
https://pubmed.ncbi.nlm.nih.gov/
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tuning, the country in which the study was conducted, the citations received for each
paper at the time of the study, whether the study was verified by a medical personnel
or a radiologist, the number of observations or images considered for the study and the
machine learning type, whether supervised or unsupervised. The distribution of the
included publications by the years in which the studies were conducted, as given in
Figure 8, shows that this study paid more attention to recent publications in the application
of ML/DL for PCa diagnosis.
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Figures 9 and 10 show the word cloud of topics and word cloud of keywords of
reviewed papers as generated by their word frequencies. They show that this study
focuses on the image-based detection of prostate cancer using deep learning techniques.
Figure 11 shows the image modalities used in the diagnosis of PCa. A total of 2 papers
used Computed Tomography (CT), 51 papers used Magnetic Resonance Imaging (MRI)
and 10 papers used ultrasound (US), while 14 papers used other imaging methods such as
Whole Slide Images (WSIs), histopathological images and biopsy images.
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Table 3. Springer papers on prostate cancer detection using machine learning, deep learning or artificial intelligence methods.

Ref. Problem Addressed Imaging Modality ML/DL Model Metrics Reported Hyperparameter Reported Subjects Similar Works

[15]

Comparison between deep
learning and non-deep classifier
for performance evaluation of
classification of PCa

MRI DCNN, SIFT-BoW,
Linear-SVM

AUC = 0.84,
sensitivity = 69.6%,
specificity = 83.9%,
PPV = 78.6%,
NPV = 76.5%

Gamma = 0.1, momentum = 0.9,
weight decay = 0.1, max training
iteration = 1000, 10-fold CV

172 [8,66–68]

[69] Classifying PCa tissue with
weakly semi-supervised technique WSI CNN, DenseNet121 -

Batch size = 128,32,
learning rate = 10−3,
decay-rate = 10−6,
Adam optimizer

1368 [70–74]

[75]

Predicting clinically significant
prostate cancer with a deep
learning approach in a
multi-center study

Parametric MRI

PI-RADS, CNN
(ResNet3D,
DenseNet3D,
ShfeNet3D and
MobileNet3D)

Sensitivity = 98.6%,
p-value > 0.99,
specificity = 35.0%

Cross-entropy loss, Adam
optimizer, learning rate = 0.01,
epochs = 30, batch size = 32

1861 [76–80]

[81]
Localization of PCa lesion
using multiparametric ML
on transrectal US

US RF
ROC-AUC for PCa
and Gleason >
3 + 4 = 0.75, 0.90

Depth = 50 nodes, 50 [82]

[83]
Transfer learning approach using
breast histopathological images
for detection of PCa

Histopathological
images

Transfer learning,
deep CNN AUC = 0.936 Epochs = 50 - [84]

[85] Image-based PCa staging
support system CT CNN

AP = 80.4%,
(CI: 71.1–87.8),
Acc = 77%
(CI: 70.0–83.4)

4-fold CV = 121 173 [86]
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Table 4. ScienceDirect papers on prostate cancer detection using machine learning, deep learning or artificial intelligence methods.

Ref. Problem Addressed Imaging Modality ML/DL Model Metrics Reported Hyperparameter Reported Subjects Similar Works

[87] Effect of labeling strategies on
performance of PCa detection. MRI

SPCNet, U-Net,
branched UNet and
DeepLabv3+

ROC-AUC = 0.91–0.94
Loss fn, Adam optimizer,
batch size = 22, epochs =30,
cross-entropy

390 [88–91]

[92]
Segmentation of prostate glands with
ensemble deep learning and classical
learning methods.

Histopathological
images RINGS, CNN DICE = 90.16% Batch size = 128,

learning rate = 10−3, epochs = 30 18,851 [93]

[94]
Diagnosis of PCa with
integration of multiple deep
learning approaches.

US S-Mask, R-CNN and
Inception-v3

Map = 88%,
DICE = 87%,
IOU = 79%,
AP = 92%

Vector = 0.001,
weight decay rate = 0.0001,
number of iterations = 3000

704 [88,95]

[96]

Upgrading a patient from
MRI-targeted biopsy to active
surveillance with machine
learning model.

MRI, US AdaBoost, RF

Acc = 94.3%, 88.1%,
pre = 94.6%, 88.0%,
recall = 94.3%, 88.1% for
Adaboost and RF.

- 592 -

[97] A pathological grading of PCa on
single US image. US

Region labeling object
detection (RLOD),
Gleason grading
network (GNet)

Pre = 0.830,
mean dice = 0.815 - - [98]

[99]
A radiomics deeply supervised
segmentation method for
prostate gland and lesion.

MRI U-Net
Mean Dice Similarity
Coefficient (DSC) = 0.8958 and
0.9176

- 50 [100–102]

[103]
Ensemble feature extraction
methods for PCa aggressiveness
and indolent detection.

MRI CorrSigNIA, CNN Acc = 80%,
ROC-AUC = 0.81 ± 0.31

Epochs = 100, batch size = 8,
Adam optimizer,
learning rate = 10−3,
weight decay = 0.1

98 [104,105]

[106] PCa localization and classification
with ML. MRI SVM, RF

Global ER = 1%,
sens = 99.1% and
speci = 98.4%

- 34 [107]

[108]
Segmenting MR images
of PCa using deep learning
separation techniques.

MRI DNN
Dice = 0.910 ± 0.036,
ABD = 1.583 ± 0, Hausdorff
Dis = 4414.579 ± 1.791

- 304 [109]

[110] GANs were investigated for detection
of PCa with MRI. MRI GANs

AUC = 0.73, average AUCs
SD = 0.71 ± 0.01 and
0.71 ± 0.04.

GANs parameters were
maintained 1160 -
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Table 4. Cont.

Ref. Problem Addressed Imaging Modality ML/DL Model Metrics Reported Hyperparameter Reported Subjects Similar Works

[111] Gleason grading for PCa detection
with deep learning techniques. MRI-guided biopsy VGG-16 CNN, J48

Quadratic weighted kappa
score = 0.4727, positive
predictive = 0.9079

- - [112]

[113] Ensemble method of mpMRI and PHI
for diagnosis of early PCa. mpMRI ANN Sensi = 80%, speci = 68% - 177 [114]

[115] Compared deep learning models for
classification of PCa with GG. WSI DLN, CNN kappa score = 0:44 Layer = 121, LR = 0.0001,

Adam optimizer 341 -

Table 5. IEEE papers on prostate cancer detection using machine learning, deep learning or artificial intelligence methods.

Ref. Problem Addressed Imaging Modality ML/DL Model Metrics Reported Hyperparameter Reported Subjects Similar Works

[14] Classification of MRI images for
easy diagnosis of PCa. MRI CNN, DL

Accuracy for training =
0.80, accuracy for testing
= 0.78

ReLU 200 [116–119]

[120] Detection of PCa in sequential
CEUS images. US 3D CNN Specificity = 91%,

average accuracy = 0.90 Layers = 6, kernels = 2–12 21,844 [121]

[122] CNN-based WSI for
PCa detection. WSI CNN

Accuracy = 0.99,
F1 score = 0.99,
AUC = 0.99

Cross-validation = 3 97 [123]

[124]

Deep entropy features (DEFs)
from CNNs applied to MRI
images of PCa to predict Gleason
score (GS) of PCa lesions.

mpMRI DEF, CNN, RF,
NASNet-mobile

AUC = 0.80, 0.86, 0.97,
0.98 and 0.86

Number of trees = 500, maximum
tree depth = 15 and minimum
number of samples in a node = 4

99 [125,126]

[127] Early diagnosis of PCa using
CNN-CAD system.

Diffusion-weighted
MRI CNN

Accuracy = 0.96,
sensitivity = 100%,
specificity = 91.67%

ReLU, layers = 6 23 -

[128] Detection of PCa with CNN. MRI

CNN, Inception-v3,
Inception-v4,
Inception-Resent-v2,
Xception, PolyNet

Accuracy = 0.99 1524 [129,130]
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Table 6. PubMed papers on prostate cancer detection using machine learning, deep learning or artificial intelligence methods.

Ref. Problem Addressed Imaging Modality ML/DL Model Metrics Reported Hyperparameter Reported Subjects Similar Works

[131]
The aggressiveness of
PCa was predicted using
ML/DL frameworks

mpMRI CNN
AUROC—0.75
Specificity—78%
Sensitivity—60%

5-fold CV, 87-13 train-test splitting 112
patients [132,133]

[134] UNet-based PCa detection
system using MRI bpMRI CNN-UNet Sensitivity—72.8%

PPV—35.5%
70/30 splitting,
Dice Coefficient used

525
patients [117,135]

[136]

Bi-modal deep learning
model fusion of
pathology–radiology data for
PCa diagnostic classification

MRI + histological
data CNN-GoogleNet AUC—0.89 - 1484

images -

[137]

ANN was used to accurately
predict PCa without
biopsy and was marginally
better than LR

mpMRI Multi-layer ANN -

5-fold CV,
cross-entropy,
learning rate 0.0001,
L2 regularization penalty of 0.0005

334
patients -

Abbreviations: MRI—Magnetic Resonance Imaging; SVM—Support Vector Machine; LDA—Linear Discriminant Analysis; QDA—Quadratic Discriminant Analysis; RINGS—Rapid
Identification of Glandular Structures; YOLO—You Only Look Once; BN—Bayesian Network; ROC—Receiver Operating Characteristic; NB—Naïve Bayes; TP—True Positive; TN—True
Negative; R-CNN—Region-Based Convolutional Neural Network; AUC—Area Under the ROC Curve; SL—Supervised Learning; UL—Unsupervised Learning; PD—Primary Data;
SD—Secondary Data; SVM-RBF—SVM-Radial Basis Function Kernel Classifier; PPV—Positive Predictive Value; NPV—Negative Predictive Value; Y—Yes; N—No; ML—Machine
Learning; DL—Deep Learning; MV—Medic Verification; CNN—Convolutional Neural Network; PCa—Prostate Cancer; mpMRI—Multiparametric Magnetic Resonance Imag-
ing; bpMRI—Biparametric Magnetic Resonance Imaging; USA—United States of America; WSIs—Whole Slide Images; PI-RADS—Prostate Imaging Reporting and Data System;
TeUS—Temporal Enhanced Ultrasound; US—Ultrasound; RF—Random Forest Classifier; PSA—Prostate-Specific Antigen; ANN—Artificial Neural Network; AUC-ROC—Area
Under the Receiver Operating Characteristic Curve; ResNet—Residual Network; ReLU—Rectified Linear Unit; csPCa—Clinically Significant Prostate Cancer; PLCO—Prostate, Lung,
Colorectal and Ovarian; Densenet—Densely-Connected Convolutional Networks; GANs—Generative Adversarial Networks; BRCA—Breast Cancer Gene; DPN—Deep Believe Network;
FCN—Fully Convolutional Network; CT—Computerized Tomography; Cl—Confidence Level; RNA-Seg—RNA Sequencing; CLSTM—Bi-Directional Convolutional Long Short-Term
Memory; BPH—Benign Prostatic Hyperplasia; RFE—Recursive Feature Elimination; LR—Logistic Regression; DLS—Deep Learning System; k—Kappa Coefficient; KN—K-Neighbors;
DT—Decision Tree; MLPC—Multi-Layer Perceptron Classifier; MLP—Multilayer Perceptron; ADA—Adaptive Boosting; QWK—Quadratic Weighted Kappa; IoU—Intersection Over
Union; AP—Average Precision; NN—Neural Network; GBDTs—Gradient-Boosted Decision Trees; CACN—Channel Attention Classification Network; DSC—Dice Similarity Coefficient;
MCCM—Matthew’s Correlation Coefficient; SVM-PCa-EDD—Support Vector Machine for Early Differential Diagnosis of PCa; CAD—Computer-Aided Design; RMANet—Multi-Modal
Feature Autoencoder Attention Net.
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Figure 11. Image modalities used in reviewed papers.

We also discovered from the review that a deep CNN is the most used ML/DL
model, spanning about 49 studies out of the 77 reviewed papers. It is also noteworthy
that transfer-learning-based DL architecture dominated the studies reviewed in this work,
with UNet, ResNet, GoogleNet and DenseNet being the topmost frameworks used in the
analysis of PCa images. This is understandable because transfer learning offers a range of
advantages, including a reduced training time, improved generalization, effective feature
extraction, addressing data imbalance and facilitating domain adaptation. In the aspect
of the performance of the models reported in the reviewed papers, the area under curve
(AUC) is the most used metric, followed by accuracy and sensitivity. Most studies also
used supervised learning (classification) methods. The images were manually annotated
by medical professionals and radiologists for an adequate performance evaluation of the
models. However, the absence of sufficient data for model training forced most authors into
using secondary data and pretrained (transfer learning) models. In terms of the countries
where the reviewed studies were conducted, Figure 12 shows that the USA has the highest
number of studies. Table 7 shows the topmost impactful papers included in our study. The
impact index is calculated using Equation (1) below:

Impact Index =

{ Citation
2023−Year f or Year < 2023
Citation otherwise

(1)
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Table 7. Top 10 most impactful papers.

Ref. Title Journal Publisher Year Citation Impact Index

[71]
Development and validation of a deep
learning algorithm for improving Gleason
scoring of prostate cancer.

NPJ Digital Medicine Nature 2019 320 80

[94]

Deep learning framework based on
integration of S-Mask R-CNN and
Inception-v3 for ultrasound-image-aided
diagnosis of prostate cancer.

Future Generation
Computer Systems Elsevier 2021 68 34

[67] Prostate cancer detection using deep
Convolutional Neural Networks. Scientific Reports Springer 2019 134 33.5

[126] Joint prostate cancer detection and Gleason
score prediction in mp-MRI via FocalNet.

IEEE Transactions on
Medical Imaging IEEE 2019 131 32.75

[88]

Prostate cancer classification from
ultrasound and MRI images using deep
learning-based explainable artificial
intelligence.

Future Generation
Computer Systems Elsevier 2022 31 31

[15]

Searching for prostate cancer via fully
automated magnetic resonance imaging
classification: deep learning versus
non-deep learning.

Scientific Reports Springer 2017 175 29.16667

[66]

Supervised machine learning enables
non-invasive lesion characterization in
primary prostate cancer with [68 Ga]
Ga-PSMA-11 PET/MRI.

European Journal of
Nuclear Medicine and
Molecular Imaging

Springer 2021 58 29

[104]

End-to-end prostate cancer detection in
bpMRI via 3D CNNs: effects of attention
mechanisms, clinical priori and
decoupled false positive reduction.

Medical Image Analysis Elsevier 2021 58 29

[98]
Stacking-based ensemble learning of
decision trees for interpretable prostate
cancer detection.

Applied Soft Computing Elsevier 2019 114 28.5

[72] High-accuracy prostate cancer pathology
using deep learning.

Nature Machine
Intelligence Nature 2020 81 27

This gives readers an overview of where to publish related research. It is evident from
this table that Nature, Elsevier and Springer are the top publishers to consider.
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5. Discussion

The included papers in Tables 3–6 gave a synthesized overview of the state-of-the-art
machine learning and deep learning applications in the detection and analysis of PCa
using medical images vis-à-vis the various problems addressed, the techniques applied,
the datasets used, feature extraction (if any), hyperparameter tuning and their respective
reported performance metrics. The expanded summary of the included papers is given
in Appendices A–D. The use of deep neural nets and transfer learning architecture with
outperforming accuracies is imminent when compared to non-deep models [8,15,66–68].
Also, MRIs (parametric and non-parametric) were the most used imaging modality in the
detection of prostate cancer. The authors have also shown that histological data can be
combined with MRI, CT or US images to better improve the accuracy of automatic detection
systems of PCa [72,123,136]. CNNs have also proven to have a strong ability to learn and
extract features from medical images and have also demonstrated remarkable accuracy
in telling malignant and benign prostate regions apart. The reviewed papers have also
demonstrated that a multi-modality integration of medical images into DL architectures can
allow for a more comprehensive assessment and potentially improve diagnostic accuracy.

5.1. Considerations for Choice of Deep Learning for PCa Image Data Analysis

The choice of which deep learning models to use for PCa detection in clinical im-
ages must be guided by a thorough exploration of their context of usages and associated
strengths and weaknesses. Table 8 gives a summary of some specialties of each of the deep
learning models to guide researchers’ choices of experimenting with PCa image datasets.

Table 8. Summary of considerations for choice of deep learning models for PCa diagnosis using
medical images.

Model Considerations

Convolutional Neural Networks
(CNNs) [122,127,138]

CNNs are the most used deep learning method for PCa image analysis tasks. They are
effective in capturing spatial patterns and features from images. CNN architectures, such
as VGG, ResNet and Inception, have achieved remarkable success in various cancer
image analysis applications, including detection, classification and segmentation.

Recurrent Neural Networks
(RNNs) [139,140]

RNNs are suited for sequential data, such as time-series or sequential medical data. In
cancer image analysis, RNNs are often used for tasks like analyzing electronic health
records or genomic data to predict cancer outcomes or identify potential biomarkers.

Generative Adversarial Networks
(GANs) [141,142]

GANs are used for generating synthetic data or enhancing existing data. In cancer image
analysis, they can be employed to generate realistic synthetic images for data augmentation
or to address data imbalance issues. GANs can also be used for image-to-image translation
tasks, such as converting MRI images to PET images for multi-modal analysis.

Capsule Networks [143,144]

Capsule Networks are alternatives to CNNs that aim to capture hierarchical
relationships between features. They have shown promise in tasks such as lung cancer
detection in CT scans. Capsule Networks offer the advantage of better handling
spatial relationships and viewpoint variations within images.

Attention Models [145,146]

Attention mechanisms have been integrated into deep learning models for cancer
image analysis to focus on relevant regions or features. They help to identify
important areas in the image and improve the interpretability and performance of the
model. Attention mechanisms can be applied in CNNs, RNNs or other architectures.

Transfer Learning [132,147]

Transfer learning involves utilizing pre-trained models trained on large-scale datasets
and adapting them to cancer image analysis tasks. By leveraging the learned features
from pre-training, transfer learning enables effective learning even with limited
labeled medical data.

5.2. Considerations for Choice of Loss Functions for PCa Image Data Analysis

One specific and very important concept in the training of deep learning models for
PCa diagnosis is the choice of loss functions, which plays a significant role in training and
optimizing the performance of the models [148,149]. Loss functions guide the optimization
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process by quantifying the discrepancy between the predicted output of the model and the
ground truth labels or targets. The choice of loss function affects how the model learns and
updates its parameters during training. A carefully selected loss function helps the model
converge to an optimal solution efficiently [150]. Loss functions are also helpful in handling
imbalance datasets—this is a common challenge where certain classes or abnormalities are
rare compared to others. In such cases, loss functions need to address the imbalance to
prevent the model from being biased towards the majority class. It also helps to handle
noise and outliers in model interpretability as well as in gradient stability [151]. Although
the choice of loss function depends largely on the specific task, the nature of the problem
and the characteristics of the dataset, Table 9 summarizes some of the most used loss
functions in deep learning and their best-suited context of usage. This does not replace
the need for necessary experimentation and evaluation while choosing the applicable and
appropriate loss function.

Table 9. Considerations for choice of loss functions in deep learning.

Loss Functions Considerations

Mean Squared Error (MSE)
Loss [152,153]

MSE loss measures the average squared difference between predicted and targeted values. It
is commonly used for regression tasks. It penalizes large errors heavily, which can be useful
when the magnitude of errors is important. However, it is sensitive to outliers and can result
in slow convergence.

Binary Cross-Entropy
Loss [154,155]

Binary cross-entropy loss is used for binary classification tasks. It measures the dissimilarity
between the predicted probability and the true label for each binary class separately. It
encourages the model to assign high probabilities to the correct class and low probabilities to the
incorrect class. It is robust to class imbalance and is widely used in tasks like cancer classification.

Categorical Cross-Entropy
Loss [155,156]

Categorical cross-entropy loss is used for multi-class classification tasks. It extends binary
cross-entropy loss to handle multiple classes. It measures the average dissimilarity between
the predicted class probabilities and the true one-hot encoded labels. It encourages the model
to assign high probabilities to the correct class and low probabilities to other classes.

Dice Loss [157,158]

Dice loss is commonly used in segmentation tasks, where the goal is to segment regions of
interest (ROIs) in images. It measures the overlap between predicted and target segmentation
masks. It is especially useful when dealing with class imbalance, as it focuses on the
intersection between predicted and targeted masks. It can handle partial matches and is
robust to the background class.

Focal Loss [159,160]

Focal loss is designed to address class imbalance in classification tasks, especially when
dealing with rare classes. It introduces a balancing factor to downweigh easy examples and
focus on hard examples. It emphasizes learning from the difficult samples, helps to mitigate
the impact of class imbalance and improves model performance on rare classes by assigning
higher weights to misclassified examples.

Kullback–Leibler Divergence
(KL Divergence) Loss [161,162]

KL divergence loss is used in tasks involving probability distributions. It measures the
dissimilarity between the predicted probability distribution and the target distribution. It is
commonly used in tasks such as generative modeling or when training variational autoencoders.

5.3. Prostate Cancer Datasets

Prostate cancer datasets consist of clinical and pathological information collected from
patients diagnosed with prostate cancer and may include various types of data, such as
patient demographics, clinical features, laboratory test results, imaging data (e.g., MRI, US
or CT scans), histopathology slides (WSI) and treatment outcomes. They are useful for
developing and evaluating machine learning and deep learning models for prostate cancer
detection, diagnosis, prognosis and treatment prediction. Table 10 presents some publicly
available databases of PCa datasets.

5.4. Some Important Limitations Discussed in the Literature

In this section, we harvest some crucial limitations identified by the authors of the
reviewed works in the literature (see Appendices A–D). This will aid readers in understanding
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the challenges encountered by researchers in conducting experiments in the application of
deep learning to PCa diagnosis. The authors of [94,101] identified limitations, which included
small and highly unbalanced datasets [98] with unavoidable undersampling. They also noted
that in an ultrasound-guided biopsy’s registration, similar to other manual pathological–
radiological strategies, a personal bias in the selection of regions of interest (ROIs) cannot be
avoided. A study has also shown that when explainability and interpretability are taken into
account in PCa prediction model construction, the runtime becomes a critical issue, and a
conscious trade-off decision must be made [98]. CNN engines have also been reported to have
poor interpretability. This is because the last convolutional layer of a classical CNN model
contains the richest spatial and semantic information through multiple convolutions and
pooling, and the next layer is fully connected with SoftMax layers, which contain information
that is difficult for humans to understand and difficult to visualize [109]. Some authors noted
that models that behave like feed-forward Long Short-Term Memory (LSTM), for instance,
have a bit of a parity issue if not augmented with deep and transfer learning methods to
classify PCa and non-PCa subjects [118]. In the summary tables, the studies identified that
multi-modal and multi-center studies can deflect the performance of a model that is adjudged
to be good enough in a unimodal and single-center study [129].

Table 10. Some publicly available databases for PCa datasets.

Databases Description

The Cancer Genome Atlas (TCGA) [163–167]
TCGA provides comprehensive molecular characterization of various cancer types,
including prostate cancer. It includes genomic data, gene expression profiles, DNA
methylation data and clinical information of patients.

The Prostate Imaging-Reporting and Data
System (PI-RADS) [168,169]

PI-RADS is a standardized reporting system for prostate cancer imaging. Datasets
based on PI-RADS provide radiological imaging data, such as MRI scans,
annotated with regions of interest and corresponding clinical outcomes.

The Prostate Imaging Database (PRID)
PRID is a database that contains MRI data of prostate cancer patients, along with
associated clinical information. It can be used for developing and evaluating
machine learning algorithms for prostate cancer detection and segmentation.

The Prostate Cancer DREAM Challenge
dataset [170,171]

This dataset was part of a crowdsourced competition aimed at developing
predictive models for prostate cancer prognosis. It includes clinical data, gene
expression profiles and survival outcomes of prostate cancer patients.

The Cancer Imaging Archive
(TCIA) [172,173]

TCIA (https://www.cancerimagingarchive.net/) provides a collection of publicly
available medical imaging data, including some datasets related to prostate cancer.
While not exclusively focused on prostate cancer, it contains various imaging
modalities, such as MRI and CT scans, from patients with prostate cancer.

SPIE-AAPM-NCI PROSTATEx
Challenge [174,175]

The SPIE-AAPM-NCI PROSTATEx Challenge dataset for prostate cancer
(https://wiki.cancerimagingarchive.net/display/ProstateChallenge/
PROSTATEx+Challenges) was released as part of a challenge aimed at developing
computer-aided detection and diagnosis algorithms for prostate cancer. It includes
multi-parametric MRI images, pathology data and ground truth annotations.

5.5. Lessons Learned and Recommendations

The application of deep learning for prostate cancer detection has made significant ad-
vancements in recent years, and this study will expose readers to the trends in the techniques,
models, datasets and some other critical considerations when venturing into similar studies.
The data quality and availability have been major limitations of the existing studies. The
data for PCa are scanty and often small and imbalanced, leading to issues with the model’s
generalizability and performance. Interpretability is of great concern in deep learning models,
especially because the models reviewed in this study are meant to be utilized by medics and
radiologists as a decision support system (DSS).

Deep learning models are often referred to as “black boxes” because they lack explain-
ability. While they can accurately make predictions, understanding the underlying factors
or features that contribute to those predictions can be difficult. This lack of interpretability

https://www.cancerimagingarchive.net/
https://wiki.cancerimagingarchive.net/display/ProstateChallenge/PROSTATEx+Challenges
https://wiki.cancerimagingarchive.net/display/ProstateChallenge/PROSTATEx+Challenges
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is a significant limitation when it comes to clinical decision making and explaining the ratio-
nale behind a model’s predictions. Given the need for an accurate and efficient radiologic
interpretation, PCa detection systems must serve as a decision-making aid to clinicians
through its explainability. Explainable artificial intelligence (XAI) models can enable more
accurate and informed decision making for csPCa, thereby fulfilling the need for improved
workflow efficiency [88,176,177].

Clinical validation, as seen in the summary tables, should be given attention in CAD-
related studies. Many deep learning studies for prostate cancer focus on retrospective
analyses using archival data. While these studies can provide valuable insights, there is a
need for robust clinical validation to assess the real-world performance and impact of these
models. Clinical validation requires multi-modal and multi-center applicability.

Also, PCa datasets are often limited, and the complex nature of the disease makes it
challenging to build models that can be generalized effectively. Regularization techniques
and careful validation are required to mitigate the risk of overfitting and improve general-
ization. Finally, for deep learning models to have a real impact on prostate cancer diagnosis,
prognosis or treatment, they need to be seamlessly integrated into the clinical workflow.
This requires addressing practical challenges such as compatibility with existing electronic
health record systems, establishing trust among healthcare professionals and addressing
regulatory and ethical considerations.

6. Conclusions

This study wholistically investigated the application of machine learning and deep
learning models in prostate cancer detection and diagnosis. We also conducted a publisher-
based comparison to give readers a view of some possible tendencies such as the potential
impact. Considerations regarding ML/DL models, PCa datasets and loss functions were
also discussed. We found that although the trend curves of systematic reviews (Figure 3)
and actual experimental studies (Figure 2) look similar, there is a need for a thorough
systematic study to investigate the trend, challenges and future directions in the applica-
tion of ML/DL models to the ravaging disease. Although one of the advantages of deep
learning models for segmentation is that they are fully automatic, requiring no intervention,
the studies showed that their performance can be improved by having some method to
improve the initial organ localization, which would allow for a relatively smaller, higher-
resolution sub-volume to be extracted instead of using the entire image, which contains
noise. We conclude that transfer learning models are recommended for PCa diagnosis. This
is because transfer learning offers significant advantages for prostate cancer diagnosis by
leveraging pre-trained models, reducing data requirements, improving model performance,
enabling faster training, capturing complex features, enhancing generalization and expedit-
ing deployment in clinical practice. Clinical verification is also required in these studies to
ensure the usability and responsibility of these studies. This will ensure that CAD-related
studies do not just end up as papers, but are integrated into existing clinical systems.
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Appendix A. Springer Papers on Prostate Cancer Detection Using Machine Learning, Deep Learning or Artificial Intelligence Methods

Ref. Problem Addressed
Imaging Modality Machine Learning Type Data Collection Medic-Verified Discussion

MRI US Others Transfer SL UL Primary Secondary Yes No Strengths Weaknesses

[15]

Comparison between deep
learning and non-deep learning
classifier for performance
evaluation in classification of PCa

4 4 4 4

Convolution features learned
from morphologic images (axial
2D T2-weighted imaging) of the
prostate were used to classify PCa

One image from each patient
was used, assuming
independence among them

[69]
Classifying PCa tissue
with weakly
semi-supervised technique

4 4 4 4
Pseudo-labeled regions
in the task of prostate
cancer classification

Increase in time to label the
training data

[75] Predicting csPCa with a deep
learning approach 4 4 4 4

Significantly reduce unnecessary
biopsies and aid in the precise
diagnosis of csPCa

It was difficult to achieve
a complete balance between
the training and external
validation cohorts

[66]
Classification of patient’s overall
risk with ML on high or low
lesion in PCa

4 4 4 4
Lesion characterization and risk
prediction in PCa

Model built on a single-center
cohort and included only
patients with confirmed PCa

[81]
Localization of PCa lesion using
multiparametric ML on
transrectal US

4 4 4 4

Visibility of a multiparametric
classifier to improve single
US modalities for the
localization of PCa

Data collected in a single center
and 2D imaging were used

[67] Clinically significant PCa
detection using CNN 4 4 4 4

Automated deep learning
pipeline for slice-level and
patient-level PCa diagnosis
with DWI

Data are inherently biased

[76]

ML model capable of predicting
PI-RADS score 3 lesions,
differentiating between
non-csPCa and csPCa

4 4 4 4
Solid feature extraction
techniques were used

Relatively small dataset for
training developed model

[68] PCa risk classification
using ML techniques 4 4 4 4

PCa risk based on PSA, free PSA
and age in patients

Dataset was collected
retrospectively, and thus,
patient management was not
consistent and oncological
outcome was absent

[8] Prostate detection, segmentation
and localization in MRI 4 4 4 4

Ability to segment and diagnose
prostate images

Lack of availability of manually
annotated data
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Ref. Problem Addressed
Imaging Modality Machine Learning Type Data Collection Medic-Verified Discussion

MRI US Others Transfer SL UL Primary Secondary Yes No Strengths Weaknesses

[70]

Impact of scanning systems and
cycle-GAN-based normalization
on performance of DL
algorithms in detecting PCa

4 4 4 4
Model was developed on
multi-center cohort

Significant class imbalance
occurred with the data

[83]
Transfer learning approach using
breast histopathological images
for detection of PCa

4 4 4 4
Transfer learning approach for
cross cancer domains was
demonstrated

No extensive pre-training
of the models

[82]
Developed a feature
extraction framework
from US prostate tissues

4 4 4 4
High-dimensional temporal
ultrasound features were used to
detect PCa

All originally labeled data are
seen as suspicious PCa

[77]
Multimodality to improve
detection of PCa in cancer foci
during biopsy

4 4 4 4
Improved targeting of PCa
biopsies through generation of
cancer likelihood maps

Transfer learning network was
not used

[85] Image-based PCa staging
support system 4 4 4 4

Expert assessment for
identification and anatomical
location classification of
suspicious uptake sites in
whole-body for PCa

A limited number of subjects
with advanced prostate cancer
were included

[78] Risk assessment of csPCa
using mpMRI 4 4 4 4

Established that using risk
estimates from built 3D CNN
is a better strategy

Single-center study on a
heterogeneous cohort and the
size was still limited

[79] Proposed a better segmentation
technique for csPCa 4 4 4 4

Automatic segmentation of
csPCa combined with
radiomics modeling

Low number of patients used

[80]
Lesion detection and novel
segmentation method for both
local and global image features

4 4 4 4
Novel panoptic model for PCa
lesion detection

Method was used for
a single lesion only

[86] Incident detection of
csPCa on CT scan 4 4 4 4

CT scans for detection of
prostate cancer through deep
learning pipeline

Only CT data were used

[71] Gleason grading of whole-slide
images of prostatectomies 4 4 4 4

Gleason scoring of whole-slide
images with millions of images

Grade group informs
postoperative
treatment decision only

[72] Detection of PCa tissue in
whole-slide images 4 4 4 4

Solid analysis of histological
images in patients with PCa

Needs more datasets to train the
model for better accuracy
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Ref. Problem Addressed
Imaging Modality Machine Learning Type Data Collection Medic-Verified Discussion

MRI US Others Transfer SL UL Primary Secondary Yes No Strengths Weaknesses

[73]
Segmentation and grading
of epithelial tissue for PCa
region detection

4 4 4 4
High performance
characteristics of a multi-task
algorithm for PCa interpretation

Misclassifications were
occasionally discovered
in the output

[74] Image analysis AI support for
PCa and tissue region detection 4 4 4 4

High accuracy
in image examination

Increase in time
to label the dataset

[84] Gleason grading for PCa in
biopsy tissues 4 4 4 4

Strength in determining the
stage of PCa

Availability of relatively
small data

Appendix B. ScienceDirect Papers on Prostate Cancer Detection Using Machine Learning, Deep Learning or Artificial Intelligence Methods

Ref. Problem Addressed
Imaging Modality Machine Learning Type Data Medic Verified Discussion

MRI US Others Transfer SL UL Primary Secondary Yes No Strengths Weaknesses

[87] Effect of labeling strategies on
performance of PCa detection 4 4 4 4

Identification of aggressive and
indolent prostate cancer on MRI

Number of samples used is
relatively small and they were
obtained from a single institution

[88]
Detection of PCa with an
explainable early detection
classification model

4 4 4 4

Improved the classification
accuracy of prostate cancer from
MRI and US images with fusion
algorithm models

Faced difficulty in selecting
which MRI to be fed as input for
the fusion model

[89]
Radiomics and machine learning
techniques to detect PCa
aggressiveness biopsy

4 4 4 4

Image-derived radiomics
features integrated with
automatic machine learning
approaches for PCa detection
gave high accuracy

Relatively small-sized
samples were used

[92]
Segmentation of prostate glands
with an ensemble deep and
classical learning method

4 4 4 4
Detect prostate glands accurately
and assist the pathologists in
making accurate diagnosis

Study was based on stroma
segmentation only

[93] An automated grading PCa
detection model with YOLO 4 4 4 4

Grading of prostate
biopsies with high performance

Relatively small amount
of data used

[90]
Textual analysis and machine
learning models to detect extra
prostatic cancer

4 4 4 4
Combined TA and ML
approaches for predicting
presence of EPE in PCa patients

Low number of
patients was used
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Ref. Problem Addressed
Imaging Modality Machine Learning Type Data Medic Verified Discussion

MRI US Others Transfer SL UL Primary Secondary Yes No Strengths Weaknesses

[94]
Diagnosis of PCa with
integration of multiple deep
learning approaches

4 4 4 4
Improve the detection of PCa
without significantly
increasing the complexity model

Limited dataset and use of only
bilinear interpolation algorithm

[91]

Detection of PCa with an
improved feature extraction
method with ensemble
machine learning

4 4 4 4

Combined machine learning
techniques to improve GrowCut
algorithm and Zernik feature
selection algorithm

Limited dataset used

[95]
Prostate biopsy calculator
using an automated machine
learning technique

4 4 4 4
First report of ML approach to
formulae PBCG RC

No external validation for the
experimentation

[96]

Upgrading a patient from
MRI-targeted biopsy to active
surveillance with machine
learning model

4 4 4 4
Machine learning with the ability
to give diagnostic assessments
for PCa patients was developed

A lot of missing values in the
dataset and small dataset

[97] A pathological grading of PCa
on single US image 4 4 4 4

High accuracy in grading of PCa
from single ultrasound images
without puncture biopsy

Low detection of PCa lesion
region and imbalance of data

[99]
A radiomics deeply supervised
segmentation method for
prostate gland and lesion

4 4 4 4

Prostate lesion detection
and prostate gland delineation
with the inclusion of local and
global features

Small sample size

[100]
Performance comparison of
promising machine learning
models on typical PCa radiomics

4 4 4 4
GBDT model implemented with
CatBoost that gave consistent
high performance

Only radiomic features with
whole prostate in the T2-w MRI
were used

[101]
SVM on Gleason grading of
PCa-based image features
(mpMRI)

4 4 4 4

Accurate and automatic
discrimination of low-grade and
high-grade prostate cancer in the
central gland

The number of study patients
was relatively small and highly
unbalanced

[102]
Deep learning model to simplify
PCa image registration in order
to map regions of interest

4 4 4 4

Image alignment in
developing radiomic and deep
learning approaches for early
detection of PCa

Segmentation on MRI,
histopathology images and gross
rotation were not captured

[98]
An interpretable PCa ensemble
deep learning model to enhance
decision making for clinicians

4 4 4 4
Stacking-based tree ensemble
method used

Relatively small sample
size was used
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Ref. Problem Addressed
Imaging Modality Machine Learning Type Data Medic Verified Discussion

MRI US Others Transfer SL UL Primary Secondary Yes No Strengths Weaknesses

[103]
Ensemble feature extraction
methods for PCa aggressiveness
and indolent detection

4 4 4 4

Radiology–pathology
fusion-based algorithm
for PCa detection from
adolescence and aggressiveness

Training cohort was relatively
small and it was taken from a
single institution

[104] Detection of PCa using 3D CAD
in bpMR images 4 4 4 4

Demonstration of a deep
learning-based 3D detection and
diagnosis system for csPCa

Prostate scans were acquired
using MRI scanners developed
by the same vendor

[106] PCa localization and
classification with ML 4 4 4 4

Automatic classification
of 3D PCa

There is a need to
increase the dataset

[105] Segmentation of MR images
tested on DL methods 4 4 4 4

Automatic classification
of PCa in MRI 3D images are relatively small

[108] Segmenting MRI of PCa using
deep learning techniques 4 4 4 4

Established that ensemble
DCNNs initialized with
pre-trained weights substantially
improve segmentation accuracy

Approach is time-consuming

[109]
Detection of PCa leveraging on
the strength of multi-modality of
MR images

4 4 4 4
Novel model that detects PCa
with different modalities of MRI
and still maintains its robustness

Dual-attention model in depth
was not considered

[110] GANs were investigated for
detection of PCa with MRI 4 4 4 4

GAN models in an end-to-end
pipeline for automated PCa
detection on T2W MRI

T2-weighted scans were used in
this study

[111]
Gleason grading for
PCa detection with deep
learning techniques

4 4 4 4
Classify PCa belonging to
different grade groups

More datasets needed for higher
accuracy and diagnostic accuracy
also needs further improvement

[112] HC for early diagnosis of PCa 4 4 4 4
Detection of PCa with
unsupervised HC in mpMRI

Relatively small patients used
and they do not include other
quantitative parameters and
clinical information

[107] Ensemble method of mpMRI and
PHI for diagnosis of early PCa 4 4 4 4

The presence of PCa is
automatically identified

Only present the design of
co-trained CNNs for fusing ADC
and T2w images, and their
performance is based on two
image modalities

[113] Ensemble method of mpMRI and
PHI for diagnosis of early PCa 4 4 4 4

Combined PHI and mpMRI to
obtain higher csPCa detection

Relatively small amount of data
for training
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Ref. Problem Addressed
Imaging Modality Machine Learning Type Data Medic Verified Discussion

MRI US Others Transfer SL UL Primary Secondary Yes No Strengths Weaknesses

[114] An improved CAD MRI for
significant PCa detection 4 4 4 4

An improved inter-reader
agreement and diagnostic
performance for PCa detection

Lack of reproducibility of
prostate MRI interpretations

[115] Compared deep learning models
for classification of PCa with GG 4 4 4 4

combining strongly and weakly
supervised models Labeling of data consumes time

Appendix C. IEEE Xplore Papers on Prostate Cancer Detection Using Machine Learning, Deep Learning or Artificial Intelligence Methods

Ref. Problem Addressed
Imaging Modality Machine Learning Type Data Medic Verified Discussion

MRI US Others Transfer SL UL Primary Secondary Yes No Strengths Weaknesses

[14] Classification of MRI for
diagnosis of PCa. 4 4 4 4

Model was trained steadily
which results in high accuracy.

Only diffusion-weighted images
were used.

[116] Prediction of PCa using machine
learning classifiers. 4 4 4 4

Improved LR for
better prediction. mpMRI was not considered.

[120]
PCa detection in CEUS
images through deep
learning framework.

4 4 4 4
Captured dynamic
information through 3D
convolution operations.

Availability of limited dataset.

[117]
Deep learning regression
analysis for PCa detection and
Gleason scoring.

4 4 4 4
Improvement of PCa grading
and detection with soft-label
ordinal regression.

Fixed sized box in the
middle of the image was used
for segmentation.

[118] PCa detection with classical and
deep learning models. 4 4 4 4

Feature extraction through
hand-crafted and
non-hand-crafted methods and
comparison in performance.

Only LSTM with possible bit
parity was used.

[122] PCa detection with
WSI using CNN. 4 4 4 4

Developed an excellent
patch-scoring model.

Model was limited
with heatmap.

[124]
An improved Gleason score and
PCa detection with a better
feature extraction technique.

4 4 4 4
Enhancing radiomics with deep
entropy feature generation
through pre-trained CNN.

Only one feature extraction
technique was utilized.

[125] csPCa detection using deep
neural network. 4 4 4 4

The neural network was
optimized with different loss
functions, which resulted in high
accuracy in detecting PCa.

2D network was used
in their work.
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Ref. Problem Addressed
Imaging Modality Machine Learning Type Data Medic Verified Discussion

MRI US Others Transfer SL UL Primary Secondary Yes No Strengths Weaknesses

[123]
Epithelial cell detection
and Gleason grading in
histological images.

4 4 4 4
Developed a model
with the ability to perform
multi-task prediction.

Experiment was not based on
patient-wise validation.

[119] Detection of PCa lesions with
transfer learning. 4 4 4 4

Compared three (3) CNN models
and suggested the best model.

Limited dataset used for testing
the model developed.

[127] Early diagnosis of Pca using
CNN-CAD. 4 4 4 4

PCa segmentation, feature
extraction and classification were
performed with an improved
CNN-CAD.

Classification was found only on
one b-value.

[126]
Prediction of PCa lesions and
their aggressiveness through
Gleason grading.

4 4 4 4
A multi-class CNN and
Focal-Net was developed in
order to predict PCa.

No inclusion of non-visible
MRI lesions.

[128] Detection of PCa with CNN. 4 4 4 4

Transferred learning with
reduction in MRI size to reduce
complexity gave high accuracy
in PCa detection.

Minimal dataset to work with.

[129]
Classification of Pca lesions into
high-grade and low-grade
through evaluation of radiomics.

4 4 4 4

Established that radiomics has
high tendency to distinguish
between high-grade and
low-grade Pca tumor.

Tendency to have some wrong
cases in the ground truth data.

[130] Pca MRI segmentation
improvement. 4 4 4 4

Developed an improved 2D PCa
segmentation network.

They only focused on MRI
segmentation of PCa.

[121] Improved TRUS for
csPCa detection. 4 4 4 4

Combined acoustic radiation
force impulse (ARFI) imaging
and shear wave elasticity
imaging (SWEI) to give an
improved csPCa detection.

Limited number of patients were
used during the experiment.
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Appendix D. PubMed Papers on Prostate Cancer Detection Using Machine Learning, Deep Learning or Artificial Intelligence Methods

Ref. Problem Addressed
Imaging Modality Machine Learning Type Data Medic Verified Discussion

MRI US Others Transfer SL UL Primary Secondary Yes No Strengths Weaknesses

[131]
Aggressiveness of PCa
was predicted using ML
and DL frameworks

4 4 4 4
Characterization of PCa
according to their
aggressiveness level

Sample size was relatively small
and study was monocentric

[178] Survival analysis of
localized PCa 4 4 4 4

Large cohort of localized prostate
cancer patients were used

Lack of independent
external validation

[132]
Transfer learning approach
with CNN framework for
detecting PCa

4 4 4 4

Compared the performances of
machine learning and deep
learning in detecting PCa with
multimodal feature extraction

Better results could be achieved
with more datasets

[135]

Detection of csPCa with deep
learning-based imaging
prediction using PI-RADS
scoring and clinical variables

4 4 4 4
Models built were validated on
different external sites

Manual delineations of the
prostate gland were used with
possibility of inter-reader
variability

[134] PCa detection using UNet 4 4 4 4
DL-based AI approach
can predict prostate
cancer lesions

Only one highly experienced
genitourinary radiologist was
involved in annotation, and
histopathology
verification was based on
targeted biopsies but not
surgical specimens

[133] UNet architecture for PCa
detection with minimal dataset 4 4 4 4

Detection of csPCa with
prior knowledge on DL-based
zonal segmentation

All data came from one MRI
vendor (Siemens)

[136]

Bi-modal deep learning model
fusion of pathology–radiology
data for PCa diagnostic
classification

4 4 4 4

Complementary information
from biopsy report and MRI
used to improve prediction
of PCa

Axial T2w MRI only was used in
this study and MRI was labeled
using pathology labels, which
may include inaccurate
histological findings

[137] ANN was used to accurately
predict PCa 4 4 4 4

Accurately predicted PCa on
prostate biopsy The sample size was limited
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