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Abstract: The human placenta is a multifunctional, disc-shaped temporary fetal organ that develops
in the uterus during pregnancy, connecting the mother and the fetus. The availability of large-scale
datasets on the gene expression of placental cell types and scholarly articles documenting adverse
pregnancy outcomes from maternal infection warrants the use of computational resources to aid
in knowledge generation from disparate data sources. Using maternal Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) infection as a case study in microbial infection, we constructed
integrated datasets and implemented visual analytics resources to facilitate robust investigations
of placental gene expression data in the dimensions of flow, curation, and analytics. The visual
analytics resources and associated datasets can support a greater understanding of SARS-CoV-2-
induced changes to the human placental expression levels of 18,882 protein-coding genes and at least
1233 human gene groups/families. We focus this report on the human aquaporin gene family that
encodes small integral membrane proteins initially studied for their roles in water transport across
cell membranes. Aquaporin-9 (AQP9) was the only aquaporin downregulated in term placental villi
from SARS-CoV-2-positive mothers. Previous studies have found that (1) oxygen signaling modulates
placental development; (2) oxygen tension could modulate AQP9 expression in the human placenta;
and (3) SARS-CoV-2 can disrupt the formation of oxygen-carrying red blood cells in the placenta.
Thus, future research could be performed on microbial infection-induced changes to (1) the placental
hematopoietic stem and progenitor cells; and (2) placental expression of human aquaporin genes,
especially AQP9.

Keywords: aquaporin; biological networks; drug targets; gene expression; gene families; hematopoietic
stem and progenitor cells; microbial infections; oxygen; placenta; SARS-CoV-2 infection; visual analytics

1. Introduction

The human placenta is an indispensable, multifunctional, disc-shaped temporary
fetal organ that develops in the uterus during pregnancy, connecting the mother and
the fetus [1–3]. The functions of the placenta include embryonic development, fetal de-
velopment, fetal protection, gas exchange, hormone secretion, metabolic transfer, and
waste elimination [1,3]. Maternal viral infection, such as infection of the enveloped ri-
bonucleic acid (RNA) single-stranded Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2), during pregnancy is a risk factor for pregnancy complications, neonatal and
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fetal complications, and long-term health issues [4,5]. Placental gene expression profiling
(placental transcriptomics) studies have revealed evidence of differential expression at
different stages of a placenta’s development, physiology, and pathology [6–10]. Typically,
genes are categorized into gene families or gene groups based on a variety of characteristics,
including shared protein sequences and function [11]. Changes to the gene expression
levels of several gene family members could alter the molecular and cellular mechanisms
during placental development, leading to impaired placental functions and developmental
stages [8,12]. The goal of the research reported here is to understand the potential changes
in placental gene expression patterns of members of gene families in response to a maternal
SARS-CoV-2 infection.

There are rapidly growing multifaceted data resources available to help us under-
stand the Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2. These COVID-19
research resources include genome-wide transcriptomic data from bulk and single-cell
RNA sequencing (RNA-Seq) of human cell types, including placental cell types [13]. The
opportunity or problem statement for this exploratory research is that the availability of
large-scale datasets on the gene expression of placental cell types and scholarly articles
documenting adverse pregnancy outcomes from maternal infection warrants computa-
tional resources to aid in knowledge generation from disparate data sources. An example
of these computational resources for knowledge generation and dissemination is visual
analytics software [14]. In RNA-Seq data analysis, interactivity and linking of visual-
izations allows the users of the visualizations to focus on gene sets of interest [15,16].
We conducted a literature search for gene expression datasets from human placentas
studied in the context of COVID-19 and identified a study with datasets on RNA-Seq
differential gene expression and gene expression counts from term placenta villi [17]. The
study by Lu-Culligan et al. [17] contains heterogeneous datasets on (1) clinical and bio-
logical characteristics of placenta samples for gene expression investigation; (2) placental
differential gene expression; (3) placental gene expression counts; and (4) human gene
nomenclature attributes. The RNA-Seq series of datasets generated by Lu-Culligan and
colleagues are shared in the National Center for Biotechnology Information’s Gene Ex-
pression Omnibus (GEO) with the identifier GSE171995. Furthermore, Zhao et al. [18]
conducted an RNA-Seq data analysis of a GSE171995 dataset with a focus on genes en-
coding galectins and pregnancy-specific glycoproteins (PSGs). These prior studies on
maternal SARS-CoV-2 infection-induced changes to placental gene expression and the op-
portunity for visual analytics-facilitated knowledge generation led to a working hypothesis
for our exploratory research [19]. Our working hypothesis, or statement of expectation,
was that visual analytics-facilitated robust data investigations of human placental gene
expression data would reveal altered biological processes in human gene groups relevant
to pregnancy complications.

In this study, a robust data investigation involves the possibility of performing tasks
along the dimensions of data challenges: data flow (i.e., collection, storage, access, and
movement); data analytics (i.e., modeling and simulation, statistical analysis, and visual
analytics); and data curation (i.e., preservation, publication, security, description, and
cleaning) [20,21]. In our experience [22–25], visual analytics tools support the performance
of complex cognitive activities, including understanding and knowledge generation [26].
Thus, our first research objective was to develop and implement visual analytics re-
sources able to integrate clinical and biological features as well as datasets on placental
gene expression and gene nomenclature associated with maternal SARS-CoV-2 infection
during pregnancy.

We focused our data investigation on the aquaporin (AQP) gene family that encodes
small integral membrane proteins (24 to 30 kilodaltons) originally studied for their roles in
water transport across cell membranes [27]. Aquaporins are widely distributed in the mam-
malian body system, including the female reproductive system during pregnancy [28–30].
Some aquaporins function in the development of mammalian placentas [31–34], includ-
ing the natural apoptosis of trophoblast cells [35]. Aquaporins also function in cellular
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processes, such as cell proliferation and migration, beyond cellular transmembrane trans-
port of water or some small solutes [36]. The 13 mammalian aquaporins (Aquaporin-0
to Aquaporin-12) can be classified by the amino acid sequence motif in their molecular
structure and their functional characteristics, such as permeability [28,37]. Aquaporin-0
(AQP0) (also known as major intrinsic protein (MIP), Aquaporin-1 (AQP1), Aquaporin-2
(AQP2), Aquaporin-4 (AQP4), Aquaporin-5 (AQP5), Aquaporin-6 (AQP6), and Aquaporin-
8 (AQP8) are referred to as orthodox aquaporins, or water channels, as they have water-
specific permeability. Aquaporin-3 (AQP3), Aquaporin-7 (AQP7), Aquaporin-9 (AQP9)
and Aquaporin-10 (AQP10) are aquaglyceroporins typically permeable to small uncharged
solutes such as lactate, glycerol, and urea [38]. Aquaporin-11 (AQP11) and Aquaporin-12
(AQP12), called super-aquaporins, have low sequence homology compared to the other
mammalian aquaporins and are expressed inside the cell with functions including the
transportation of water, glycerol, and hydrogen peroxide [37]. New knowledge about
signaling pathways that control aquaporin activation, gating, and trafficking are needed to
develop AQP-targeted therapies as well as research and diagnostic tools [39]. In this study,
the human placenta villi samples obtained from mothers with SARS-CoV-2 infection and
matched healthy controls [17] are the biological samples that are the source of RNA for the
RNA-Seq sequencing of human genes, including aquaporins. Thus, our second research
objective was to determine the patterns of placental gene expression in human aquaporin
genes between control and maternal COVID-19 groups. The findings could be of great
value for the identification and validation of therapeutic targets for the development of
potent immunotherapeutic agents. The different types of gene expression patterns may
include differential, outlier, and coordinated expression.

The primary data source for this data investigation is the RNA-Seq dataset labelled as
GSE171995 in the National Center for Biotechnology Information’s (NCBI) Gene Expression
Omnibus (GEO) [17]. We present the uniquely integrated datasets and the designs of the
interactive visualizations for the data investigations that we implemented using visual
analytics software. The implemented interactive visualizations for gene expression analysis
are: (1) volcano plot of differential expression; (2) data table of gene names with gene
expression patterns defined by binary numbers; (3) data table of placenta samples according
to sex of infant, SARS-CoV-2 infection status and severity; (4) box plot of gene expression
counts; and (5) heatmap of Z-score normalization for each gene.

The visual analytics resources implemented can support interactive data investigations
on SARS-CoV-2-induced changes to the placental expression levels of 18,882 protein-coding
human genes and at least 1233 human gene groups/families. Among the 13 human aqua-
porins, Aquaporin-9 (AQP9) was the only aquaporin downregulated in term placental villi
from SARS-CoV-2 positive mothers. Previous studies have found that (1) oxygen modulates
placental development and AQP9 expression in the placenta [40,41]; and (2) SARS-CoV-2
can disrupt the formation of the oxygen-carrying red blood cells in the placenta [42]. Thus,
the need for further research on the changes in the expression of AQP9 in placental cell
types in response to SARS-CoV-2 and other microbial infections is critical for the protec-
tion of the fetus during pregnancy. The website link to the datasets and visual analytics
resources is available in the Supplementary Materials section of this report.

2. Methods
2.1. Data Sources and Overview of Robust Data Investigations of Placental Gene Expression
Patterns in Response to Maternal SARS-CoV-2 Infection

The principal data sources of the datasets used to construct value-added datasets
and to design interactive visualizations were (1) the scholarly article (PubMed Center:
PMC8084634) by Lu-Culligan et al. [17] and (2) the associated processed RNA-Seq datasets
available in the National Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) Series GSE171995 [43]. The RNA-seq platform is Illumina HiSeq 2500
(Homo sapiens) (NCBI GEO GPL16791). The bulk RNA sequencing was performed on
samples of term placental villi from “pregnant women with COVID-19 (n = 5) and un-



Analytics 2024, 3 119

infected control individuals matched for maternal age, gestational age, maternal comor-
bidities, and mode of delivery (n = 3)” [17]. An additional data source, the Human
Gene Names database [44], provided the dataset on gene name attributes, including
gene groups/families and the unique Ensembl Gene ID from the Ensembl bioinformatics
project [45]. We constructed value-added datasets by using visual analytics software to add
calculated fields to the datasets obtained from the data sources. Using the visual analytics
software and the Ensembl Gene ID as a linking unique identifier, we constructed an inte-
grated dataset by selecting relevant data fields in the value-added datasets. In Figure 1,
we present an overview of robust investigations (along the dimensions of data flow, data
curation, and data analytics [20]) of placental gene expression patterns in response to
maternal SARS-CoV-2 infection.
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maternal SARS-CoV-2 infection. The dimensions of data challenges were obtained from Ahalt et al. [20].

2.2. Construction of Value-Added Datasets

In the following paragraphs, we provide details of the methods used to collect/assemble
datasets, including the addition of calculated fields that add value to the initial datasets.

Gene Expression Levels. The NCBI GEO Series GSE171995 contained processed
files of mRNA profiles of placental villous tissue at term delivery from control and
SARS-CoV-2-positive mothers [17]. We downloaded the comma separated value (csv) files
with RNA sequencing (RNA-Seq) variables for differential expression (e.g., Log2FoldChange
and p-value) and abundance (kallisto counts) of mRNA transcripts. Each dataset included
data columns for Ensembl Gene Identifier and Gene Symbol. The “differential expression”
dataset consisted of 33,576 data rows (genes) and 8 data columns (for example, Ensembl
Gene Identifier, Log2FoldChange, p-value and adjusted p-value). The mRNA transcript
abundance (“gene expression counts”) dataset consists of 33,576 data rows (genes) and
10 data columns (Ensembl Identifier, Gene Symbol, five placenta samples from SARS-
CoV-2 infection positive mothers, and three placenta samples from SARS-CoV-2 infection
negative mothers).
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Patterns of Gene Expression Levels. RNA-Seq enables measurement of gene expres-
sion by digital transcript counting and is thus amenable to the encoding of gene expression
counts as binary digits of 0 and 1, depending on the criterion [46,47]. We uploaded the
datasets into Tableau Desktop Professional (Tableau) [48] and added new data columns
(calculated fields feature in Tableau) to construct binary number patterns (also referred
to here as binary patterns) for the data on gene expression levels. These patterns are
able to support data investigations by grouping genes according to representations of
gene expression levels. The two new data columns were 15-digit and 3-digit binary (pres-
ence (1) or absence (0)) patterns. For the 15-digit binary number patterns, in the “gene
expression count” dataset, each digit of the 15-digit binary pattern corresponds to the
presence (1) or absence (0) of a COVID sample mRNA abundance value that is greater than
a control placenta sample. Since there are five placenta samples for SARS-CoV-2 infection
and three controls, we constructed a 15-digit binary pattern for each gene. For example,
“111111111111” means that all of the five placenta samples associated with maternal SARS-
CoV-2 infection (COVID2, COVID3, COVID4, COVID5, and COVID6) have counts greater
than the control samples (ctrl1, ctrl2, and ctrl3). In RNA-Seq gene expression data, zero
counts can be due to sampling, biological, and technical reasons [49]. To represent zero
counts in the control samples of the GSE171995 gene expression count dataset, each digit
in the 3-digit binary pattern corresponds to the presence (1) or absence (0) of an mRNA
abundance value of zero from a control placenta sample. For example, a gene assigned
to “111” indicates that all three control samples have an mRNA abundance value of zero.
Using the calculated field feature in Tableau, we combined the 3-digit and 15-digit binary
patterns for each gene to form an 18-digit binary pattern data column. It is a possibility that
genes that have an identical 18-digit pattern could share biological processes. The visual
analytics design that incorporates data filters of the 3-digit and 15-digit binary numbers
can support the identification of the set of genes. We constructed another dataset from a
“gene expression counts” dataset by reshaping the wide-format to long-format [50]. The
long-formatted “gene expression counts” dataset allowed us to construct box plot visuals
of the distributions of gene expression counts for the eight placenta samples.

Clinical and Biological Features. Using a spreadsheet software (Microsoft Excel
2016) [51], we constructed a dataset comprising the SARS-CoV-2 infection status (pla-
centa and mother), sex of infant, and severity of SARS-CoV-2 infection (mother) [17]. There
are examples of gene family members that have increased expression levels in severe
COVID-19 cases, including genes involved in placental development [52]. The presence
of placenta sample identifiers (COVID2 to COVID6) in the clinical and biological features
dataset allowed us to combine the dataset on clinical features with the dataset on gene
expression counts.

Human Gene Names and Symbols. The datasets of genes from the NCBI GEO Series
GSE171995 include data fields for Ensembl Gene Identifier and the Human Gene Sym-
bol. We connected the datasets from GSE171995 to additional data fields in the Human
Genome Nomenclature Committee’s (HGNC) “Complete HGNC-approved dataset” file
with 54 data columns (nomenclature attributes) and 43,177 data rows (human genes includ-
ing protein-coding genes) [44]. The presence of Ensembl Gene identifiers (prefixed with
ENSG) in the HGNC-approved dataset allowed us to (1) combine the dataset on human
gene nomenclature with the dataset on differential gene expression; and (2) include the
nomenclature attributes of gene families or gene groups.

2.3. Design and Implementation of Visual Analytics Resources

The design and implementation of visual analytics resources were performed in
Tableau Desktop Professional and disseminated on the internet using Tableau Public [48].
In this report, four visualizations (heatmap, volcano plot, box plot, and data tables), which
are relevant to gene expression data investigation, were designed in the visual analytics
software. Following the use of a heatmap visual for scaled RNA-Seq expression data by
Zhao et al. [18], we designed an interactive heatmap view to visualize the Z-scores of
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expression levels for each gene in the GSE171995 dataset. The seven placenta samples
compared for each gene were COVID3, COVID4, COVID5, COVID6, Ctrl1, Ctrl2, and Ctrl3.
The design of the heatmap view contained a filter for Gene Symbols. When compared to
the mean, the Z-scores can be positive (higher than mean), negative (lower than mean), and
zero (same as mean) [53].

The volcano plot, a type of scatter plot, displays the effect size estimate [Log2(Fold
Change)] on the x-axis and statistical significance [−Log10(p-value)] on the y-axis for genes
from a gene expression profiling [54]. The volcano plot of differential gene expression
values divides the gene collection according to statistical significance and direction of
the changes in expression levels (increased/up or decreased/down). The box plot is a
one-dimensional visual that displays the distribution of values and provides five statistical
values: maximum, minimum, median, first quartile, and third quartile [55–57]. Comparing
the shape and statistical values of box plot values supports informal inferential visuo-
analytical reasoning [56]. Similar to the published methods [58,59], we used the outlier
values detection feature of the box plot to conduct a “sample-centric” data investigation
of placental gene expression values associated with members of gene families. The data
tables, an example of an enclosure diagram, display values in a matrix of rows and columns,
allowing for grouping values and looking up values [60]. In the visual analytics software,
we also facilitated robust data investigations by combining interactive visualizations as
(1) dashboards (e.g., box plot and heatmap) and (2) blended views (e.g., binary numbers
data table and heatmap).

2.4. Verification of Accuracy of Visual Analytics Resources Content and Gene Family Expression
Use Cases

We used the heatmap visual for galectins (LGALS) and pregnancy-specific glycopro-
teins (PSG) to verify the accuracy of the design of the interactive heatmap. We expected
that the magnitude of color scaling from our design would be consistent with the heatmap
LGALS and PSG gene groups in Zhao et al. [18]. The shape and position of genes in the
interactive volcano plot were compared with the static volcano plot in the publication by
Lu-Culligan et al. [17], in which HSPA1A (heat shock protein family A (Hsp70) member
1A) is one of the four differentially expressed genes with significant adjusted p-values.
Thus, a verification of the accuracy of the interactive visualizations is the finding of the
HSPA1A gene expression level and a statistical significance consistent with the source
publication [17]. In addition, the color intensity of rectangles (tiles) in the heat map of gene
expression levels for the selected 70 top significant genes [17] allowed us to determine
the accuracy of the box plot representation. Based on the heat map, we expected that the
expression level of HLA-DMB (major histocompatibility complex, class II, DM beta) in the
box plot of data for placenta sample COVID2 would be higher than the expression level
of HLA-C (major histocompatibility complex, class I, C). In addition, we expected that, in
the box plot of data for placenta COVID6 sample, the HLA-C would be higher than the
expression of HLA-DMB.

In this study, we investigated the 14 human aquaporin gene family members: MIP,
AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7, AQP8, AQP9, AQP10, AQP11, AQP12A,
and AQP12B. We used the 14 gene symbols of aquaporin genes to display the aquaporin-
specific (1) list of gene names with gene expression patterns defined by binary numbers,
(2) volcano plot of differential expression, (3) box plot of gene expression counts, and
(4) heatmap of Z-score normalization for each gene. We selected the aquaporin gene family
as a use case because of our prior research on aquaporins [24,28,61–63] and the role of
aquaporins in placental health and disease [31,34,64,65]. The visual analytics resources
allow the selection of gene groups beyond the focus of this report.

2.5. Searches for Biological Networks and Pathways associated with Gene Sets

Visuals of biological networks and pathways are resources for understanding the cel-
lular and molecular mechanisms of genes [66]. Thus, we used the Network Data Exchange
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Integrated Query (NDEx IQuery) [67] to search for biological networks and pathways
associated with a gene set. A gene symbol or multiple gene symbols served as search text
for an integrated query of biological network/pathway resources. We conducted searches
with (1) the 14 gene symbols for the aquaporin gene family; (2) each aquaporin symbol
and gene symbols that share the 18-digit binary pattern with an aquaporin; and (3) up-
regulated and downregulated genes in term placenta samples from maternal SARS-CoV-2
infection [17]. To enable the NDex IQuery for search gene, we included a web link (uniform
research location) action to the visual analytics view of the integrated dataset. We evaluated
the results of the NDex networks/pathways search for relevance to infection, pathogen,
and placenta.

3. Results

We describe below the designs produced, accuracy of the content, and the findings
using example genes and gene groups. The details for access to the constructed datasets
and interactive visualizations are available in the Supplementary Materials section of
this report. Though the aquaporin gene family is the gene group of interest, researchers
can use the datasets and interactive visualizations to investigate other gene groups. The
stages of the robust data investigations consist of the following: (1) assemble relevant data
sources; (3) construct datasets and design interactive visualizations; and (3) perform data
investigations. The constructed datasets included calculated data fields to add value to the
datasets. Additionally, some of the produced interactive visualizations included web link
actions and objects (such as web page and image) to facilitate robust data investigations.

3.1. Constructed Datasets

We have constructed datasets to understand the potential changes in the placental
gene expression patterns of members of gene groups in response to maternal SARS-CoV-2
infection. The datasets were on RNA-Seq differential gene expression and RNA gene
transcript counts, as well as biological and clinical features of the placenta samples. A
summary of the constructed datasets associated with the visual analytics are available in
Supplementary Table S1. The five major gene expression datasets constructed are available
in Tables S2–S6. The availability of the human gene nomenclature dataset [68] enabled us to
integrate gene groups and locus group (e.g., protein-coding, non-coding, and pseudogene)
annotations to the shared gene expression datasets. Furthermore, using the gene expression
counts (kallisto counts) from GSE171995, we constructed calculated data fields for seven
Z-scores in order to compare the expression levels of a gene across four COVID placenta
samples (COVID3, COVID4, COVID5, and COVID6) and three control placenta samples
(Ctrl1, Ctrl2, and Ctrl3).

An integrated dataset on placenta gene expression in response to maternal SARS-
CoV-2 infection (Table S7) combines data fields from the constructed datasets and the
datasets on HGNC gene names. The data fields in the integrated dataset include gene
identifiers, differential expression, binary pattern, gene group nomenclature, and the Z-
scores for 35,084 genes, including 18,882 protein-coding genes, 8898 pseudogenes, and
80 non-coding RNA genes (Table S7). We have designed and implemented the following
interactive visualizations: (1) heatmap of Z-score normalization for each gene; (2) volcano
plot of differential expression; (3) data table of gene names with gene expression patterns
defined by binary numbers; (4) data table of placenta samples according to sex of infant,
SARS-CoV-2 infection status, and severity; and (5) box plot of gene expression counts.

3.2. Volcano Plot of Differential Gene Expression

We have designed the volcano plot with data filters to support decision-making
regarding the selection of differentially expressed genes (Figure A1). We represented genes
in the volcano plot as square (statistically significant) or circle (statistically insignificant).
The shape of the volcano plot was consistent with the source publication (PubMed Central
Identifier: PMC8084634) [17]. The differential gene expression patterns for the 14 aquaporin
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genes and genes for HLA-C (increased expression) and TGM3 (decreased expression) are
shown in Figure 2 Aquaporin-3 (AQP3) and Aquaporin-1 (AQP1) are the only aquaporins
with a positive fold change differential expression. The Aquaporin-9 gene is the only
aquaporin with statistically significant (p < 0.05) decreased expression (negative fold
change) in the placenta villi samples from SARS-CoV-2 positive mothers.

Analytics 2024, 3, FOR PEER REVIEW 8 
 

 

An integrated dataset on placenta gene expression in response to maternal SARS-
CoV-2 infection (Table S7) combines data fields from the constructed datasets and the da-
tasets on HGNC gene names. The data fields in the integrated dataset include gene iden-
tifiers, differential expression, binary pattern, gene group nomenclature, and the Z-scores 
for 35,084 genes, including 18,882 protein-coding genes, 8898 pseudogenes, and 80 non-
coding RNA genes (Table S7). We have designed and implemented the following interac-
tive visualizations: (1) heatmap of Z-score normalization for each gene; (2) volcano plot of 
differential expression; (3) data table of gene names with gene expression patterns defined 
by binary numbers; (4) data table of placenta samples according to sex of infant, SARS-
CoV-2 infection status, and severity; and (5) box plot of gene expression counts.  

3.2. Volcano Plot of Differential Gene Expression  
We have designed the volcano plot with data filters to support decision-making re-

garding the selection of differentially expressed genes (Figure A1). We represented genes 
in the volcano plot as square (statistically significant) or circle (statistically insignificant). 
The shape of the volcano plot was consistent with the source publication (PubMed Central 
Identifier: PMC8084634) [17]. The differential gene expression patterns for the 14 aqua-
porin genes and genes for HLA-C (increased expression) and TGM3 (decreased expres-
sion) are shown in Figure 2 Aquaporin-3 (AQP3) and Aquaporin-1 (AQP1) are the only 
aquaporins with a positive fold change differential expression. The Aquaporin-9 gene is 
the only aquaporin with statistically significant (p < 0.05) decreased expression (negative 
fold change) in the placenta villi samples from SARS-CoV-2 positive mothers. 

 
Figure 2. Differential gene expression pattern of aquaporins, HLA-C (major histocompatibility com-
plex, class I, C), and TGM3 (transglutaminase 3). The decreased expression of Aquaporin-9 (AQP9) 
is statistically significant (p < 0.05). MIP is the official symbol for Aquaporin-0. 

  

Figure 2. Differential gene expression pattern of aquaporins, HLA-C (major histocompatibility
complex, class I, C), and TGM3 (transglutaminase 3). The decreased expression of Aquaporin-9
(AQP9) is statistically significant (p < 0.05). MIP is the official symbol for Aquaporin-0.

3.3. Combination of Gene Expression Box Plots and Data Table of Placenta Samples according to
Sex of Infant, SARS-CoV-2 Infection Status, and Severity of SARS-CoV-2 Infection

We obtained the annotations of clinical and biological aspects of placenta samples from
the NCBI GEO GSE171995 gene expression series and the PubMed Central PMC8084634
scholarly article. The five placenta samples from mothers with SARS-CoV-2 infection were
from two female infants (COVID3 and COVID5) and three male infants (COVID2, COVID4,
and COVID6). COVID3 is the only placenta sample with detection of SARS-CoV-2, while
COVID6 is the only placenta sample without symptomatic COVID-19. COVID2 and
COVID6 are placenta samples from male infants whose mothers had severe COVID-19
based on admission to hospital Intensive Care Unit (ICU) or need for supplemental oxygen.
The box plots for the eight placenta samples revealed the distribution patterns of gene
expression counts for the 14 aquaporin genes (MIP or AQP0 to AQP12B) (Figure 3). AQP1,
AQP3, AQP7, and AQP9 had outlier counts in at least one of the eight placenta samples.
AQP7 had outlier counts for Ctrl1, Ctrl3, COVID4, and COVID5 placenta samples. AQP9
had outlier counts for Ctrl2 and COVID3 placenta samples. AQP1 had outlier counts for
COVID3, COVID5, and COVID6 placenta samples. AQP3 had outlier counts for COVID5
and COVID6 placenta samples.
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Figure 3. Patterns of distributions of gene expression values for the aquaporin gene family in
eight placental villous samples from mothers with and without SARS-CoV-2 infections. The visual
integrates designs of enclosure data table showing clinical features of the placental villous sample and
box plots of gene expression counts for 14 human aquaporin genes. The dashboard design supports
sample-centric analysis, including identifying outlier values and differences in distribution patterns.

Since Lu Calligan et al. [17] detected SARS-CoV-2 by quantitative reverse PCR (qRT-
PCR) in only COVID3, we compared the gene expression counts for the two placental
samples (COVID3 and COVID5) from female infants (Figures 3 and 4). The gene expression
counts for AQP1 and AQP9 in SARS-CoV-2-positive COVID3 were at least two-fold larger
than SARS-CoV-2-negative COVID5. The fold values were 2.6 for AQP1 and 9.5 for AQP9.
AQP1 had outlier values for COVID3 and COVID5 (Figure 3).

3.4. Data Table of Genes with Gene Expression Values Grouped by Binary Number Patterns

The 15-digit and 3-digit binary number patterns grouped the 35,376 genes in the “gene
expression count” dataset to 1470 groups and 8 groups, respectively. The combination of
the 15-digit and 3-digit binary number patterns (18-digit binary number patterns) resulted
in a dataset of 35,084 genes with gene expression counts for the placenta samples. The
18-digit pattern also grouped the dataset into 2253 groups. A subset of the binary number
patterns and associated mRNA abundance values for the aquaporin gene family and other
human gene family members revealed that aquaporin genes were grouped according to
two types of binary patterns (Figure 4 and Table S8). The aquaporin genes labeled as 000,
which had control sample values greater than zero, are AQP1, AQP3, AQP4, AQP5, AQP6,
AQP7, AQP9, and AQP11. Additionally, the aquaporin genes labeled as 010, which had the
value of control placenta sample Ctrl2 as zero, are MIP, AQP2, AQP8, AQP10, AQP12A,
and AQP12B. The gene expression value of AQP9 for the Ctrl2 control sample is 260, which
is an outlier value compared to the other aquaporins with values of 0 (MIP, AQP2, AQP8,
AQP10, AQP12A, and AQP12B); 1 (AQP4 and AQP5); 3 (AQP6); 6 (AQP1); 10 (AQP7 and
AQP11); and 21 (AQP3).
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Figure 4. An image of the enclosure table constructed in visual analytics software for aquaporin genes
and other selected human gene family members grouped by binary number patterns that represent
comparison of gene expression counts between placenta samples from maternal SARS-CoV-2 infection
and control samples. The 3-digit binary number patterns indicate presence (1) or absence (0) of mRNA
abundance values of zero for each of the three control samples. The 15-digit binary numbers encode
patterns for comparing the transcript counts between the five COVID samples and the control samples.
Each COVID sample pattern encodes three binary digits where “1” is for presence and “0” is for
absence of mRNA abundance value in the COVID sample that is greater than the three placenta
samples from mothers without SARS-CoV-2 infection. The combination of the three-digit binary
numbers for the five COVID samples resulted in the 15-digit binary number pattern. The website
links to obtain interactive versions of the visuals are available in the Supplementary Materials section
of this report.

Since placental mRNA expression of two members of the antiviral interferon-induced
transmembrane gene family (IFITM) were upregulated in severe COVID-19 disease [52],
we included the gene expression patterns and values for comparison to the aquaporin gene
family. Inteferon-induced transmembrane protein 1 (IFITM1), IFITM2, and IFITM3 had
significantly higher values in placenta villi from severe COVID-19 (13,815 for COVID4)
compared to placenta from asymptomatic COVID-19 (1762 for COVID6). We constructed
an 18-digit binary number label for each gene by combining the 3-digit and 15-digit. The
14 aquaporin gene transcripts are grouped by 13 binary numbers with AQP6 and AQP7
sharing the same binary pattern (Table 1). In the dataset, AQP9 shares the 18-digit binary
number of “000000101000000000” with three genes. The two genes with the HGNC’s
official symbol are “peptidase inhibitor 3” (PI3) and “triggering receptor expressed on
myeloid cells 1” (TREM1). Our literature search for co-occurrence of AQP9, PI3, and TREM1
retrieved a study where AQP9, PI3, and TREM1 were among the top 10 genes with the
greatest significant expression changes in bone marrow hematopoietic stem and progenitor
cells (HSPCs) in older adult trauma patients (relative to/vs. age-matched controls) [69].
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Table 1. Constructed binary number patterns for gene expression counts of NCBI GEO GSE171995.

Aquaporin
Binary Number
Pattern of Gene

Expression

Genes with Binary
Number Pattern

Example Genes with
Binary Number

Pattern *

AQP0 (MIP) 010010000010000000 656 ESX1 TLX1
AQP1 000011111011111011 45 BRCA1 CD9
AQP2 010011010010000010 95 TSLP VIP
AQP3 000011011010011111 17 HOXD8 TPRV2
AQP4 000010010010000000 54 CD1C NOX1
AQP5 000010010000010000 15 HEPHL1 KLF4

AQP6, AQP7 000011010010010000 588 CFTR HNF4A
AQP8 010011010010000000 352 CALHM1 FGF21
AQP9 000000101000000000 4 PI3 TREM1

AQP10 010011000010010000 212 OR4C16 TLR9
AQP11 000011011011000000 25 IL4I1 SLC6A4

AQP12A 010010000000000010 36 MDFIC2 PRL
AQP12B 010011010010010010 473 CETP CACNA1I

* Genes have evidence in Google Scholar for research in the context of mammalian placenta or pregnancy. The full
names of the gene symbols are available at the HUGO Gene Nomenclature Committee (HGNC) website.

3.5. Combination of Heatmap and Box Plot of Gene Expression Levels

The heatmap represents normalized values of the gene expression counts as Z-scores.
The heatmap of gene groups, galectin (LGALS) and pregnancy-specific glycoprotein (PSG),
constructed in this study was similar to the heatmap available in the publication by
Zhao et al. [18]. The box plot shows the distribution of the gene expression counts for
the placenta samples. The box plot for gene groups constructed in our study can be a
representation that is complementary to the heatmap (Figure 5). This finding supports the
accuracy of the box plot and heatmap visuals for the placental expression of the aquaporin
genes (Figure 6). A finding from both visuals for the aquaporins is that a placenta sam-
ple from a healthy control (Ctrl1) has outlier expression levels for AQP2, AQP6, AQP10,
AQP12A, and AQP12B. The integration of the box plot and heatmap patterns provides
multiple perspectives to help us understand the expression patterns of the members of
gene groups/families.

3.6. Biological Networks and Pathways associated with Gene Sets

We compiled the web links of results of biological network and pathway NDex IQqeury
searches for gene groups (Tables S9 and S10). The searches were with (1) the 14 gene symbols
for the aquaporin gene family; (2) each aquaporin symbol and gene symbols that share the
18-digit binary pattern with an aquaporin; and (3) 301 upregulated and 189 downregulated
genes in term placenta samples with maternal SARS-CoV-2 infection. From the searches,
we selected 19 for further investigation because of relevance to SARS-CoV-2 infection or
placenta (Table S8). Among the results for the 14 gene symbols, AQP7, an aquaglycer-
porin, was annotated with the placenta-relevant peroxisome proliferator-activated receptors
(PPARs) signaling (nuclear hormone receptors that are activated by fatty acids and their
derivatives) [70]. Two pathways retrieved involving SARS-CoV-2 for differentially ex-
pressed genes are MAPK signaling for upregulated genes (ATF2, BCK2, and IFITM3) and
autophagy (ATG16L2). Among genes that share the 18-digit binary pattern for gene expres-
sion counts with aquaporins, the following selected retrieved networks or pathways are
relevant to SARS-CoV-2 infection or placenta biology.

• Inflammatory response to SARS-CoV-2 (IFNA8, IFNA13, IFNW1, NOX1, and TLR9)
• Immune response to SARS-CoV-2 (CSF2, IFNA13, and REN)
• Linoleic acid metabolism affected by coronavirus infection (ACOT2)
• Pathogenesis of SARS-CoV-2 mediated by nsp9-nsp10 complex (IGLL1)
• SARS-CoV-2 host-pathogen interaction (NUP210)
• Iron metabolism in placenta (HEPHL1)
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• SARS-CoV-2 signaling pathway (HP, ITIH4, and SERPINA10)
• Microglia pathogen phagocytosis (TREM1)
• Hematopoietic stem cell differentiation (CSF2)
• Pregnane X receptor pathway (GSTA2)
• Prolactin signaling pathway
• Glycolysis and gluconeogenesis (PGK2)
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pattern represented by the interactive heatmap constructed in this study is similar to the heatmap
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visuals are available in the Supplementary Materials section of this report.
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Figure 6. Placental expression patterns of genes encoding aquaporins in placenta samples of mothers
with (COVID series) and without (Ctrl series) SARS-CoV-2 infection. (a) Box plot patterns and
(b) heatmap patterns. Source of data is the GSE171995 sample series available at the NCBI Gene
Expression Omnibus. The website links to obtain interactive versions of the visuals are available in
the Supplementary Materials section of this report.

Since the TREM1 and AQP9 shared the same 18-digit gene expression count pat-
tern (Table 1), we were interested in the differential expression of the 40 human genes
involved in the microglia phagocytosis pathway (WikiPathways: WP3937) [71]. Among
the 40 human genes in the microglia phagocytosis pathway, 19 were downregulated and
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21 upregulated in placenta samples from maternal SARS-CoV-2 infection with five genes
(C1QA, C1QB, C1QC, CYBB, and FCER1G), having statistical significance at the 0.05 level
(Figure 7). This integration of pathway and differential expression visuals is another re-
source to aid in the robust investigation of placental gene expression in response to maternal
SARS-CoV-2 infection.
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Figure 7. A visual of microglia phagocytosis pathway from WikiPathways (WP3937) and visual
representation of differential gene expression of 40 genes in the microglia phagocytosis pathway in
response to maternal SARS-CoV-2 infection. The HGNC Nomenclature website provides additional
information on the gene symbols. Trem3 is a mouse gene. The website links to obtain interactive
versions of the visuals are available in the Supplementary Materials section of this report.

3.7. Visual Analytics Resources for Robust Investigations of Placental Gene Expression Data in
Response to Maternal SARS-CoV-2 Infection

The integrated dataset (Table S7, Figure A2) combines data fields from the constructed
datasets and the dataset on HGNC gene names described in Section 3.1. The Ensembl Gene
ID and Gene Symbol are data fields in all the datasets. The datasets and other data fields
in the integrated dataset are (1) gene expression counts (Binary Pattern, Placenta Sample
ID, and Z-Score); (2) differential gene expression (p value < 0.05 and COVID vs. Control,
and Placenta Sample ID); and (3) HGNC gene names (Gene Group, Group ID, and Locus
Group). To enable robust data investigations of the dataset, we designed an interactive
dashboard that supports the display of gene sets according to data filters with the differ-
ential expression as the highest level of grouping (Figure A3). The dashboard supports
searches for additional information on scholarly publications and network/pathways asso-
ciated with the gene of interest. The filters applied in Figure A3 display gene groups for
aquaporins and galectins. Another dashboard has the binary pattern for placental gene
expression counts as the highest level of grouping (Figure A4). This design allowed us to
display the data fields for aquaporin genes, PI3 and TREM1. An 18-digit binary pattern
of “000000101000000000” grouped AQP9, PI3, and TREM1 together with AQP9 having
a statistically significant downregulation in term placenta villi of maternal SARS-CoV-2
infection. The hyperlinks to scholarly publications and the network/pathway searches are
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included to facilitate personalized learning of placental biological networks and pathways
in health and disease.

4. Discussion

Gene expression profiling studies on placenta cell types are generating new knowledge
on cellular and molecular pathways that influence the function, structure, and development
of the human placenta in health and disease [2,72,73]. Progress in technologies for profiling
genome-wide placental gene expression suitable for knowledge generation from evidence
through comparing attributes in datasets from healthy and disease states [74,75]. The visual
analytics resources in this report facilitated investigations of datasets on clinical, biological,
placental gene expression, and gene nomenclature associated with a study on maternal
SARS-CoV-2 infection during pregnancy [17]. Thus, we have designed and implemented
visual analytics resources (Figures 2–7) comprising visualizations of quantitative data
(volcano plot, box plot, heatmap, and data tables) that are relevant to the investigations
of gene expression datasets [76]. Similar to previous studies [21–24], we have applied
general-purpose business intelligence/visual analytics software to design and implement
interactive visualizations of professionally collected datasets. The integrated dataset with
a Z-score for each gene per sample (Table S7 and Figure A2) and select data fields from
other constructed datasets is a resource for research on SARS-CoV-2-induced changes to
placental gene expression.

In the context of the influence of maternal SARS-CoV-2 infection on placental gene
expression (NCBI GEO GSE171995), the visual analytics resources can support the data
investigations of 35,084 human genes including 18,882 protein-coding genes and at least
3337 human gene groups. The gene groups were obtained from the HUGO Gene Nomen-
clature Committee (HGNC) database [68]. The changes in the expression levels of members
of human gene families could infer altered signaling pathways relevant to impaired func-
tioning of the human placenta as a direct result of SARS-CoV-2 infection. A secondary data
analysis using Z-score normalization and a heatmap visual of GSE171995 gene expression
counts identified changes in gene groups of galectins (LGALS), pregnancy-specific glyco-
proteins (PSGs), and glycosylation pathways during maternal SARS-CoV-2 infection [18].
We used the visuals generated in these two analyses of GSE171995 [17,18] to guide the
design of our visualizations and verify the accuracy. The similarity of the volcano plot
(Figure A2) and heatmap (Figure 5b) to the visuals produced by Lu-Culligan et al. [17]
and Zhao et. al. [18], respectively, provided a basis for robust data investigations of aqua-
porin genes and other gene groups. The hyperlinks, in the interactive visualizations, to
searches for genes in scholarly and network/pathway resources enables access to the latest
knowledge regarding the gene(s) of interest.

We have used binary numbers to generate patterns for (1) presence or absence of zero
(0) value in the three control samples; and (2) the identification of expression levels of
COVID-19 placenta samples that are greater than the control placenta sample (Figure 4).
The novel 3-digt and 15-digit binary patterns constructed in this study facilitated the
classification of the 35,357 genes in the GSE171995 dataset. The integration of the binary
patterns and the gene expression values present an approach to compare values that
can prompt gene group-specific analysis (Figure 4). To verify the accuracy and potential
biological relevance of the data integration in Figure 4, we included the interferon-induced
transmembrane protein (IFITM) gene family, in which some gene members (IFITM1, IFITM2
and IFITM3) [52] encode interferon responsive proteins that inhibit fusion of enveloped
viruses with human cell membranes and could also inhibit, with trophoblast, fusion stages
in placental development [77]. The 15-digit binary pattern of “000111111111111” was the
same for IFITM1, IFITM2, and IFITM3, while IFITM5 and IFITM10 had unique patterns
of “011000011000000” and “011010010010010”, respectively. A placenta sample, COVID4,
from a mother with severe SARS-CoV-2 infection (Figure 4), had a significantly higher
value of 13,815 for IFITM3 compared to 3195 for IFITM2 and 2203 for IFITM1 (Figure 5).
Across all the COVID placenta samples, IFITM3 had highest value compared to IFITM1
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and IFITM2. This higher gene expression level could be consistent with findings that the
IFITM3 protein has the greatest effect on reducing trophoblast fusion [52,78,79].

New knowledge on signaling pathways that control aquaporin activation, gating,
and trafficking are needed for developing AQP-targeted therapies as well as research and
diagnostic tools [39]. The Aquaporin-9 (AQP9) gene transcript is the only aquaporin gene
transcript that was significantly downregulated (p < 0.05) in SARS-CoV-2-infected placenta
samples (Figure 2). In the three control samples, AQP9 had gene expression counts above
the zero level and labeled with the 3-digit pattern of “000” (Figure 4). Additionally, the
15-digit binary pattern for AQP9 was “000101000000000”, which represents the fact that
the COVID3 placenta sample had higher gene expression counts than the Ctrl1 and Ctr3
placenta samples. The 3-digit and 15-digit binary number patterns of AQP9 were shared
with two genes: “peptidase inhibitor 3” (PI3) and “triggering receptor expressed on myeloid
cells 1” (TREM1). Furthermore, the heatmap visual revealed generally similar patterns
with expression in the Ctrl2 placenta sample for the three genes (Figure A4). Coincidentally,
AQP9, PI3, and TREM1 are among the top 10 genes with the greatest significant expression
changes in bone marrow hematopoietic stem and progenitor cells (HSPCs) in older adult
trauma patients (relative to/vs. age-matched controls) [69]. The human placenta is a potent
niche for the formation of blood cells and contains HSPCs throughout development [80].
The adult-type definitive erythroid cell (EryD) expresses AQP9 [81]. The PI3 gene is
expressed in the human placenta [82] and encodes trappin2/elafin, a key component
of the innate immune system, which functions in antimicrobial and anti-inflammatory
pathways [83,84].

In a gene expression study of individuals with acute respiratory distress syndrome
(ARDS), the PI3 gene was downregulated in the blood of patients with an acute stage
of ARDS [83]. Hypoxia or low oxygen availability in cells is a severe, life-threatening
manifestation of ARDS caused by severe acute respiratory syndrome coronaviruses [85].
SARS-CoV-2 virus, the causative agent for Coronavirus Disease 2019 (COVID-19), can
infect erythroid precursors and progenitors with the consequence of hypoxia to cells
and tissues [42]. Hypoxia induced by SARS-CoV-2 may cause the placental pathology
of maternal vascular malperfusion (MVM) [86]. Among the term placenta samples from
SARS-CoV-2 infected mothers, only COVID4 had MVM with an additional description of
intervillous thrombi [17]. In normal pregnancy, at approximately 20 weeks, hemotrophic
nutrition is the mode of fetal nutrition, as the source of energy, and is characterized by ox-
idative phosphorylation [74] and a three-fold increase in intraplacental oxygen tension [87].
Considering that oxygen modulates placenta development [40] and oxygen tension could
modulate AQP9 expression in the human placenta [41], there is need for further research on
SARS-CoV-2 and other microbial infection-induced changes to the expression of AQP9 in
placenta cell types. Additional reasons for further research on AQP9 in placenta structure,
function, and development include the role of AQP9 in (1) preterm premature rupture of
membrane (PPROM) [88], (2) early-onset pre-eclampsia [89], and (3) recurrent spontaneous
abortion [65].

We used NDEx Integrated Query [67] to retrieved biological networks and pathways
for genes of interest. Based on a shared binary pattern of gene expression counts for AQP9
and TREM1, we selected the microglia phagocytosis pathway for further investigation
by retrieving the differential gene expression data for 40 genes in the pathway (Figure 7).
Prins et al. [90] described microglia as the missing link in maternal immune activation and
fetal neurodevelopment and speculated that “microglia as possible link in preeclampsia and
disturbed neurodevelopment”. We combined the WikiPathways (WP3937) visual and the vi-
sual representation of placental differential expression for the 40 genes (Figure 7). The genes
for complement proteins (C1QA, C1QB, and C1QC), cytochrome b-245 beta chain (CYBB),
and Fc epsilon receptor Ig (FCER1G) were upregulated with statistical significance in the
placenta samples of mothers with SARS-CoV-2 infection. TREM1 is an immune receptor on
the microglia and a potent amplifier of inflammation [91]. The prolactin signaling path-
way (WikiPathways: WP2037) and mammary gland development pathway—pregnancy
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and lactation (Stage 3 of 4) (WikiPathways WP2817)—were retrieved based on a shared
binary pattern of gene expression counts for prolactin (PRL) and aquaporin-12A (AQP12A)
(Table 1). The placenta can be seen as a “pharmacological organ” [92] that secretes the pro-
lactin (PRL) growth hormone (GH) family of proteins to support adaptations to maternal
physiological processes during pregnancy and lactation [92,93]. The post-natal influences
on maternal and child health of the placental hormone warrant visual analytics projects to
construct visual representations of differential placental gene expression and integrate them
with network/pathway visuals, such as WikiPathways [71]. These integrated visualizations
can support hypothesis generation and pharmacological research on hormones unique to
pregnancy and lactation. Thus, the placental differential gene expression visual presents a
value-added feature to the network/pathway connection visuals retrieved by NDex IQuery.

We have conducted robust data investigations using the published datasets available
from scholarly data repositories. Thus, the findings could have limitations associated with
the datasets. For example, the gene expression of a placenta sample may be atypical for the
category as seen in the COVID2 sample of the GSE171995 dataset [17]. A recent analysis
of GSE171995 did not include the COVID2 sample [18]. Thus, to enhance the usefulness
of the visual analytics resources presented, we verified the computational patterns with
independently published experimental results on placental expression of gene families in
response to SARS-CoV-2 infection [18,77]. The overall approach (Figure 1) and the designs
of worksheets and dashboards could be useful for similar studies. The constructed datasets,
available as comma separated values and spreadsheet files, as well as the visual analytics
resources used in this study, are available online (details in Supplementary Materials
section). Researchers can use the computational resources to facilitate collaborative and
personalized data investigations and learning of human placental gene expression patterns
in response to SARS-CoV-2 infection.

The working hypothesis to guide this exploratory study was that visual analytics-
facilitated robust data investigations of human placental gene expression data would reveal
altered biological processes of human gene groups relevant to pregnancy complications.
The visual analytics approach helped connect placental gene expression to placental bio-
logical processes involving aquaporins and other gene groups. Future studies with the
datasets could consider hypothesis-driven analysis of the datasets and grammar-based
approaches to a hypothesis-driven theory of visual analytics [94,95]. We generated volcano
plots, box plots, enclosure data tables, and heatmaps to visualize the RNA-Seq gene expres-
sion data. Future studies could design other interactive visuals, such as a multidimensional
scaling (MDS) plot [15], principal component analysis (PCA) plot [96], and scatter plot [76]),
to support further understanding of SARS-CoV-2-induced changes to placenta function,
structure, and development.

5. Conclusions

The human placenta is a multiscale complex versatile organ of pregnancy described as
a fetal life-support system [97,98]. The computational products reported here are interactive
visual analytics resources, which can support interactive robust data investigations of the
gene expression patterns of 35,084 human genes, including 18,882 protein coding genes
in five placenta samples from mothers with SARS-CoV-2 infection and three placenta
samples from mothers without SARS-CoV-2 infection. A focused data investigation of
the 13 members of the human aquaporin gene family revealed noteworthy findings on
Aquaporin-9, whose placental expression could be modulated by oxygen tension. Thus,
future research could consider studies on microbial infection-induced changes to the
placental hematopoietic stem and progenitor cells, as well as placental expression of human
aquaporin genes, especially AQP9.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/analytics3010007/s1. The interactive versions of the figures, work-
sheets, and dashboards are available at https://public.tableau.com/app/profile/qeubic/viz/gse1
71995_analytics/abstract (accessed on 8 November 2023). The visual analytics file can also be

https://www.mdpi.com/article/10.3390/analytics3010007/s1
https://www.mdpi.com/article/10.3390/analytics3010007/s1
https://public.tableau.com/app/profile/qeubic/viz/gse171995_analytics/abstract
https://public.tableau.com/app/profile/qeubic/viz/gse171995_analytics/abstract
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downloaded and used as offline software using the free Tableau Reader: https://www.tableau.
com/products/reader/download (accessed on 8 November 2023). Table S1: Description of datasets;
Table S2: Differential gene expression dataset; Table S3: Gene Expression counts (wide format) dataset;
Table S4: Gene expression counts (long format); Table S5: Gene expression scores dataset (wide for-
mat); Table S6: Gene expression scores (long format); Table S7: Integrated dataset of placental
gene expression in response to maternal SARS-CoV-2 infection; Table S8: Gene expression counts
and binary patterns for aquaporin and selected genes; Table S9: NDex IQuery network search;
Table S10: Website Links to selected pathway diagrams.
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Appendix A

This appendix section provides three additional screenshots of visual analytics
(Figures A1, A3 and A4) and spreadsheet (Figure A2) resources for robust investigation
of the gene expression patterns of members of gene families (Figures A1–A4). These
computational resources can support the performance of tasks along the dimensions of
data challenges: data flow (i.e., collection, storage, access, and movement); data analytics
(i.e., modeling and simulation, statistical analysis, and visual analytics); and data curation
(i.e., preservation, publication, security, description, and cleaning) [20,21].
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HSPA1A: heat shock protein family A (Hsp70) member 1A; PPP1R11: protein phosphatase 1 regu-
latory inhibitor subunit 11; TGM3: transglutaminase 3. The accuracy of the volcano plot was deter-
mined by comparison with the static volcano plot in the publication with PubMed Central Identifier 
of PMC8084634 [17]. The differential expression of HSPA1A position is similar to the plot in Lu 
Calligan and co-authors [17]. In this figure, we provide two additional examples of genes with sig-
nificant increased expression levels (HLA-C and PPP1R11) and two genes with significant decreased 
expression levels (AQP9 and TGM3). The dataset for the volcano plot is available at 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171995 (accessed on 28 October 2023). 

 
Figure A2. A screenshot of a spreadsheet section of the integrated dataset of placenta gene expres-
sion in response to maternal SARS-CoV-2 infection. The integrated dataset was constructed from 
data fields in datasets on differential gene expression, gene expression counts, and human gene 
nomenclature [17,68]. The Ensembl Gene ID and Gene Symbol are data fields in all the datasets. 
The datasets and other data fields in the integrated dataset are (1) gene expression counts (Binary 
Pattern, Placenta Sample ID, and Z-Score); (2) differential gene expression (p value < 0.05 and COVID 
vs. Control, and Placenta Sample ID); and (3) HGNC gene names (Gene Group, Group ID, and Locus 
Group). The dataset is available as a spreadsheet file (Table S7). The spreadsheet worksheet has data 
filters for each column to allow for interaction. 

Figure A1. A design of an interactive volcano plot of differential gene expression by RNA-Sequencing
between placenta villous samples from SARS-CoV-2 positive and SARS-CoV-2 negative mothers. This
worksheet view can be a component of an interactive dashboard. The genes represented with squares
have significant differential expression at p < 0.05. The labels are examples of genes with increased and
decreased expression levels in SARS-CoV2 placenta tissue. Gene symbol and names are as follows.
AQP9: aquaporin-9; HLA-C: major histocompatibility complex, class I, C; HSPA1A: heat shock
protein family A (Hsp70) member 1A; PPP1R11: protein phosphatase 1 regulatory inhibitor subunit
11; TGM3: transglutaminase 3. The accuracy of the volcano plot was determined by comparison with
the static volcano plot in the publication with PubMed Central Identifier of PMC8084634 [17]. The
differential expression of HSPA1A position is similar to the plot in Lu Calligan and co-authors [17].
In this figure, we provide two additional examples of genes with significant increased expression
levels (HLA-C and PPP1R11) and two genes with significant decreased expression levels (AQP9 and
TGM3). The dataset for the volcano plot is available at https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE171995 (accessed on 28 October 2023).
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Figure A2. A screenshot of a spreadsheet section of the integrated dataset of placenta gene expres-
sion in response to maternal SARS-CoV-2 infection. The integrated dataset was constructed from
data fields in datasets on differential gene expression, gene expression counts, and human gene
nomenclature [17,68]. The Ensembl Gene ID and Gene Symbol are data fields in all the datasets.
The datasets and other data fields in the integrated dataset are (1) gene expression counts (Binary
Pattern, Placenta Sample ID, and Z-Score); (2) differential gene expression (p value < 0.05 and
COVID vs. Control, and Placenta Sample ID); and (3) HGNC gene names (Gene Group, Group ID,
and Locus Group). The dataset is available as a spreadsheet file (Table S7). The spreadsheet worksheet
has data filters for each column to allow for interaction.
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gene. The selected gene in this case is AQP9, which shares the 18-digit binary pattern with PI3 and 
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Figure A3. A screenshot of the interactive dashboard for interacting with the integrated dataset
of differential expression, gene expression counts, and human gene nomenclature for response to
maternal SARS-CoV-2 infection. The display is for gene groups of aquaporins, aquaporins|blood
group antigens, galectins, and receptor ligand|galectins. The insert image is for website links
to scholarly publications relevant to placenta and network/pathways for a gene (LGALS9 in this
example). The dataset for the heatmap: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE171995 (accessed on 28 October 2023).

Analytics 2024, 3, FOR PEER REVIEW 21 
 

 

 
Figure A3. A screenshot of the interactive dashboard for interacting with the integrated dataset of 
differential expression, gene expression counts, and human gene nomenclature for response to ma-
ternal SARS-CoV-2 infection. The display is for gene groups of aquaporins, aquaporins|blood group 
antigens, galectins, and receptor ligand|galectins. The insert image is for website links to scholarly 
publications relevant to placenta and network/pathways for a gene (LGALS9 in this example). The 
dataset for the heatmap: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171995 (ac-
cessed on 28 October 2023). 

 
Figure A4. A screenshot of the interactive dashboard that groups genes by binary patterns of RNA-
Seq gene expression counts from placenta samples from mothers with and without SARS-CoV-2 
infection. The design allows for website link actions to display additional knowledge on a selected 
gene. The selected gene in this case is AQP9, which shares the 18-digit binary pattern with PI3 and 
TREM1. 

  

Figure A4. A screenshot of the interactive dashboard that groups genes by binary patterns of RNA-
Seq gene expression counts from placenta samples from mothers with and without SARS-CoV-2
infection. The design allows for website link actions to display additional knowledge on a selected
gene. The selected gene in this case is AQP9, which shares the 18-digit binary pattern with PI3
and TREM1.
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