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Abstract: Innovation and technology are important tools for delivering efficiency and productivity
improvement in the minerals sector. The uptake of technologies has proven to be an important
lever for increasing the productivity of the mining sector. This paper provides a comprehensive
analysis of mine-level productivity using global data of copper, gold, and platinum from 1991 to 2020.
Various drivers of productivity have been analysed to draw policy insights. Empirical findings reveal
significant disparities in terms of technical efficiency and productivity across mines and regions.
The further decomposition of total factor productivity (TFP) into its different components suggests
that the adoption of innovative practices and investment in technology adoption could improve the
overall productivity of these commodities sectors. Our findings also suggest that an appropriate
input mix and optimal scale of production could boost platinum mining productivity. Regional
disparities in the productivity of different commodities sectors (e.g., South Africa vs. Zimbabwe) give
policymakers insights into how to support production scale and productivity through appropriate
input mixes.
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1. Introduction

The mining industry’s productivity has steadily fallen over the last few decades [1–3].
These fluctuations in commodities sectors’ efficiency and productivity have presented
challenges to global demand and supply balances. Mining exporting countries, in particular,
are vulnerable to delayed growth due to low productivity [4–6]. The significant growth in
resource demand caused by global industrialisation and urbanisation has put great pressure
on mining companies to boost productivity. Industry leaders have primarily focused on
using partial measures of productivity (e.g., labour productivity) as performance indicators,
which do not fully reflect the factors underpinning their productivity [7,8]. Unlocking
productivity potentials and studying alternatives for reversing falling trends are critical for
a country’s economic success. The recent reduction in mining productivity has attracted
the interest of policymakers and corporate executives.

Innovation in mining has been a key agenda for both mining businesses and policy
makers. In recent years, the mining industry has focused on using innovation to increase
productivity through a number of productivity-enhancing initiatives and technologies,
such as mine automation, artificial intelligence (AI), and electric vehicles [1,9,10]. The ad-
vancements in technology (through the automation of processes) is increasing productivity
by either maintaining the same workforce or directly reducing the number of employees
required in production [11,12]. Conversely, the fall in ore quality across commodities as a
result of the exploitation of low-quality resources is negating productivity improvements
by increasing the costs of extraction and capital investment. Furthermore, the utilisation
of input mixes and expansion in the scale of production have impacts on productivity
patterns. The extent to which these varied elements influence production is still unknown.
Therefore, it is critical to determine how all of these different elements explain the mining
sector’s productivity.
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Understanding the causes of productivity decline is difficult. Several factors influence
mining industry productivity and efficiency, including management approaches, effective
resource allocation, scale economies, and, most importantly, innovation [13]. Embracing
new technologies and optimal management practices also significantly influences the
efficiency and productivity of the mining industry [14]. Automation and advancements in
robotics technology, for instance, contribute to decreases in carbon emissions and increases
in mining industry productivity [10]. The development of technologies and their use in
the mining industry have enhanced mineral recovery while lowering production costs and
energy use [11].

This study examines the mining sector’s total factor productivity (TFP) and its drivers
using a large mine-level panel dataset comprising copper, gold, and platinum. TFP is
described as the increased in output level that cannot be explained by increases in inputs.
In other words, it is simply regarded as the Solow residual or a result of technological
improvements. We study numerous factors that explain the differences in efficiency and
productivity between mines and other areas. The breakdown of TFP into its constituent
parts provides useful policy insights into how to improve the mining sector’s performance.

The paper is structured as follows. Section 2 presents a review of the literature on
TFP measurement and the components of its change. There is also a brief assessment
of existing studies of mining sector productivity and their limitations. Section 3 goes
into detail about the methods of measuring TFP and data that were used in the analysis.
Section 4 discusses the results of TFP and its associated measures of efficiency change.
Finally, Section 5 concludes with closing remarks and potential policy initiatives to increase
mineral productivity.

2. Literature Review

The idea of productivity and its decomposition into its components, such as technical
efficiency and allocative efficiency, was first introduced by Farrell his seminal work [15].
Farrell pointed out that a producer is always concerned with expanding the output level of
the firm without using more resources. Excessive use of inputs for a given level of output
or the production of less output from a given level of inputs results in technical inefficiency,
while the inappropriate use of the mix of inputs leads to allocative inefficiency. After
Farrell’s work, other measures were developed, including scale efficiency [16,17]. Technical
efficiency is usually measured using either an input- or an output-oriented approach. Input-
oriented technical efficiency is defined as the ability of a firm to minimize its input use to
produce a given level of output (or hold output mixes fixed in the case of multiple outputs),
while output-oriented technical efficiency is defined as the maximisation of output using a
given level of inputs (or holding input mixes fixed in case of multiple inputs).

Researchers have attempted to understand the causes of declining productivity trends
and examined the many variables that account for variations in mining performance.
However, most of the existing literature has focused on partial productivity (such as labour)
or aggregate-level productivity using residual approach [12,18–20]. Partial productivity
(e.g., labour productivity) measures provide useful insights about a firm’s performance, but
they can be limited in scope to providing an overall picture of the firm. On the other hand,
the TFP and its associated measures of efficiency change can provide a comprehensive
picture and identify areas that require improvement.

To examine productivity and its various drivers, researchers have widely used this ap-
proach in almost every field of economics and business. Researchers have made extensive
use of data envelopment analysis (DEA) methods to compute the components of technical
change and technical, allocative, and scale efficiency. Both input- and output-oriented
approaches have been adopted to measure technical and allocative inefficiencies [21,22].
Applications range from agriculture [23–25] to manufacturing [2,26] and the services sec-
tor [27–29]. There are also other important drivers of TFP, including scale and scope
economies and technical change, which need further investigation to identify compre-
hensive policy insights [13]. For instance, it would be interesting to know whether the
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uptake of technologies driving the productivity or scale and scope economies (as a result of
appropriate output and input mixes) are important levers of TFP in the mining sector.

Over the past few decades, policy discussions have centered on the efficiency and
productivity of the mining industry. Many studies have concentrated on the theoretical and
empirical foundations of efficiency and productivity and relate these concepts to various
factors, including innovation and technical change, the adoption of technologies, scale
and scope economies, investment lags, capacity utilisation, and input quality [10,29,30].
However, most studies have examined the productivity of the mining sector using aggregate
data [18,20,31–33]. For instance, Topp used data from the Australian mining industry to
estimate productivity and find a downward trend in mining TFP between 2001–2002 and
2006–2007, concluding that the depletion of resources and capital adjustment contributed
to the drop in TFP [33]. The analytical approach proposed by Grifell-Tatje and Lovell, on
the other hand, divides changes in productivity into variations in capacity utilisation and
price recovery. They pointed out that an analysis of Chile’s mining industry productivity
by [34] using the Solow residual approach suggested that research and development (R&D)
spending and technology appear to be important productivity drivers.

Other studies used either mine-level or aggregate data to investigate the efficiency
and productivity of specific commodities [14,29,35]. de Solminihac et al., used the Solow
residual approach to compute the TFP of the Chilean copper sector and concluded that
the rising input costs and declining ore quality reduced labour productivity [34]. They
also note a 42% decline in labour productivity from 1999 to 2010. Oliveira et al., used
a limited dataset of 25 gold mining companies and noted a marginal improvement in
environmental efficiency [36]. Some previous studies used global gold mine-level data
for 2019 to estimate a carbon-adjusted efficiency and technology gap between different
production environments and technologies, such as open pit and underground [12]. They
noted significant disparities in efficiency (ranging from 18% to 100%) between mines,
attributed to the technology gap.

Most of the available research on the mining industry’s productivity and efficiency is
either constrained to TFP analyses at the aggregate level or uses sparse firm- and mine-level
data. To identify numerous performance-enhancing factors, a thorough investigation of the
mining sector’s productivity is required. It would be crucial to determine whether more
resources should be devoted to R&D or innovation and technology adoption to increase
productivity. This report attempts to offer a thorough overview of TFP and its significant
drivers in the mining industry.

3. Methods and Data

Productivity is often implicitly measured as the ratio of an aggregate output to an
aggregate input [37]. The aggregation of inputs and outputs must be performed using
aggregators [13,38]. The identification of appropriate aggregator functions is important for
the construction of various indexes. Both linear and non-linear aggregators can be used
to construct TFP indexes. Linear aggregators have been widely used in cost minimisation
or revenue maximisation estimations. The optimisation measures used in the economic
literature typically use linear aggregators to estimate the components of TFP, for example, to
minimize costs or maximize revenues/profits. However, the use of non-linear aggregators
is uncommon in the productivity literature.

Productivity is defined as the ratio of an aggregate output to an aggregate input
as follows:

TFPit =
Qit
Xit

(1)

where Qit is an aggregate output, and Xit is an aggregate input.
The TFP of a firm i between periods t and s can be defined as follows:

TFPis,it =
Qit/Xit
Qis/Xis

=
Qis,it

Xis,it
(2)
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where Qis,it = Qit/Qis and Xit,is = Xit/Xis.
These indexes satisfy the axioms and tests, including monotonicity, linear homogeneity,

proportionality, commensurability, and identity.
The decomposition of TFP into its different components allows policymakers and

researchers to identify the sources of growth of firms or industries. In the earlier literature,
TFP was defined as a measure of either technical change or ignorance using a growth
accounting approach. The previous literature argued that technical change and the capital-
to-labour ratio were the only sources of growth in output per head [37,39]. However,
this interpretation has several limitations, as pointed out by Carlaw and Lipsey [40]. For
instance, they point out that the aggregate measure of TFP does not allow the identification
of different sources of productivity change, whereas researchers and policymakers seek
to understand the different drivers of productivity that could help to suggest appropriate
policy measures. This paper decomposes TFP into several measures, such as best practices
and scale and scope economies. Different components of TFP changes are defined and
explained below.

3.1. Measures of Efficiency

TFP change can be decomposed into several components, such as technical change,
technical, scale, mix efficiency change, and other measures of efficiency change (e.g., input-
or output-scale mix efficiency) and have been discussed in the literature [13,38]. These
components of TFP, as measures of efficiency, are briefly explained in Figure 1. For instance,
F1F1 represents a restricted production frontier, where both input and output mixes are
held fixed, whereas F2F2 represents the production frontier when both input and output
mixes are allowed to change. Q̃nt, and Q∗nt represent the maximum possible aggregate
output (on the restricted frontier), and maximum possible aggerate output with unrestricted
production frontier), respectively, whereas Xnt represents the aggregate input quantity
required to produce the aggregate output (Qnt), and Xnt represents the amount of minimum
possible aggregate input that is producing the aggregate output (Qnt). Similarly, X̃nt is
the quantity of aggregate input that is required to produce maximum possible aggregate
output (Q̃nt) on the restricted frontier (F1F1), and X̂nt is the amount of aggregate input
that is required to produce maximum possible aggregate output (Q̂nt) on the unrestricted
frontier (F2F2). Point A shows that a mine is using an aggregate input Xnt to produce the
output Qnt; however, the same level of output could be produced using a smaller amount of
aggregate input (i.e., Xnt). Any movement from point A to point B leads to increased TFP as
a result of improvement in the input-oriented technical efficiency (i.e., ITEt =

Slope of OA
Slope of OB ).

In contrast, scale efficiency can be measured by moving around the frontier F1F1 from B
to D (i.e., the ratio of slope of OB to slope OD). Now, if restrictions on input mixes are
relaxed (i.e., shifting to new frontier F2F2), the mine can further reduce the aggregate input
to produce the same output level Qnt, which is defined as input-oriented mix efficiency
(i.e., (IMEt =

Slope of OB
Slope of ODU ). A movement from point A to point E leads to an increase in the

TFP of the mine, which can be decomposed into different components. We note that any
movement from point D to point E measuring the slope (OU/OE) is defined as residual
scale efficiency.

The input-oriented technical efficiency (ITE), which is based on the slope (OA/OB), is
defined in terms the ratio of aggregate inputs as follows:

Input− oriented technical efficiency (ITE) =
Slope of OA
Slope of OB

=
Xnt

Xnt
(3)

The input-oriented scale efficiency (ISE) is another measure commonly used to calcu-
late efficiency related to economies/diseconomies of scale, identified using slope (OB/OD)
as follows:

Input− orientd scale efficiency(ISME) =
Slope of OA
Slope of OB

=
Qnt/Xnt

Q̃nt/X̃nt
(4)
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The input-oriented mix efficiency (IME), given by slope (OB/OU), is defined as follows:

Input− oriented mix efficiency (IME) =
Slope of OB
Slope of OU

=
X̂nt

Xnt
(5)

Finally, the residual input-oriented scale efficiency (RISE) is shown in Equation (6). In
other words, this is essentially a measure of scale efficiency, which may contain a residual
mix effect or potential TFP change by relaxing restrictions on the input–output mix.

Residual input− oriented scale efficiency(RISE) =
Slope of OU
Slope of OE

=
Qnt/X̂nt

Q∗nt/X∗nt
(6)

3.2. TFP and Its Decomposition

TFP efficiency (TFPE) is a useful overall measure of district performance, as shown
in Equation (7). It is measured by the ratio of observed TFP to the maximum feasible TFP
(TFP*), which, given the existing technology, is equal to slope (OA/OE). The TFP efficiency
can provide the following meaningful decomposition.

TFPEnt = TFPnt
TFP∗nt

= Qnt/Xnt
Q∗nt/X∗nt

=
Slope of OA
Slope of OB ×

Slope of OB
Slope of OD ×

Slope of OU
Slope of OE

= ITEnt × ISEnt × RMEnt = ITEnt × ISMEnt
(7)

When a mine transitions from a technically efficient point on the mix-restricted frontier
to a point of maximum production on the unconstrained frontier, ISME measures the
increase in TFP. Simply expressed, ISME, also known as the scale mix efficiency, quantifies
the productivity gap caused by scale mix inefficiencies.

3.3. Empirical Model

A linear programming model based on DEA is used to estimate the measures of
efficiency. Assuming that a locally linear production technology is used, we can write both
input- and output-oriented production functions in linear form. An input-oriented locally
linear production technology implies that any input vectors in the neighbourhood can be
written in linear form as follows,

µ′qnt = α + υ′xnt (8)
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where µ and υ are non-negative, and α may take any value. Since α does not take any
pre-assigned value, it exhibits variable returns to scale. It can exhibit local increasing
returns to scale (α < 0), local decreasing returns to scale (α > 0), local non-increasing returns
to scale (α ≥ 0), and local constant returns to scale (α = 0). The local input distance function
corresponding to frontier (1) can be written as follows:

Dt
I(xnt, qnt) =

υ′xnt

µ′qnt − α
(9)

DEA involves choosing values of unknown parameters for minimizing the value
of input distance Equation (9). Once the values of these parameters are selected using
minimisation, one can identify the aggregate inputs and outputs parallel to different input
and output vectors after performing some manipulations. DEA problems can be solved via
either the primal or dual linear programming problem.

The dual input-oriented problem (for example) to choose optimum values is defined
as follows:

Dt
I(xnt, qnt)

−1 = min
λ,θ

λ

s.t.
N
∑

i=1

t
∑

r=1
θirqir ≥ qnt

λxnt −
N
∑

i=1

t
∑

r=1
θirxir

N
∑

i=1

t
∑

r=1
θir = 1

λ, θir ≥ 0 for i = 1, . . . , N and r = 1, . . . , t.

(10)

3.4. Data and Variables

We use mine-level data for each mineral that has been obtained from S&P Global
Market Intelligence’s reports on cost database. These data are standardised based on the
year-end calendar. All production units are converted into a common scale extracted from
the financial and technical reports of each company. It is possible that many mines have
joint production of multiple commodities such as gold and copper, however, S&P Global
provides cost of production data for each commodity separately, which has been down-
loaded directly from their website. Details about mine level data reporting methodology
can be found at the following S&P website. The missing values for which information
is unavailable are extrapolated using industry benchmarks and average values (such as
productivity and energy consumption rates). All monetary data were denominated in US
Dollars and derived in terms of unit costs. For further details, refer to the S&P Global
Market Intelligence Database. Table 1 presents the descriptive statistics of output and input
variables for all three commodities used in the TFP analysis. The variable log(y) is the
logarithmic average quantity of each commodity produced per annum, whereas log(Ore)
represents the logarithmic quantity of the ore bodies of each commodity used as an input
in the production of minerals. However, labour, fuel, and capital inputs are presented in
monetary terms, and logarithmic values are used in the production frontier.

Figure 2 show the input cost trends from 1991 to 2020. As can be noted, there has
been an upward trend in labour, energy, and capital costs since 2002. Copper mining is
a capital-intensive industry, and for several reasons, such as diminishing ore grades and
investments in technology, the capital costs involved have risen over time. Similarly, rising
energy costs affect the sector’s efficiency and productivity. Figure 2a shows that in 2020,
the energy cost of copper production was above 4 cents per pound. Similar trends can be
observed in the input cost of gold production (See Figure 2b). However, platinum input
costs show a different trend (as depicted in Figure 2c). It can be seen that this input cost
rapidly declined until the 2000s; thereafter, capital costs remained stable, but both energy
and labour costs fluctuated post-2009.
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Table 1. Descriptive statistics of output and input quantities.

Variables Description Copper Gold Platinum

log(y) Output (Tonnes) 14.81 5.38 3.71
(2.13) (2.24) (1.94)

log(lab) Labour ($) 21.89 9.81 9.89
(1.56) (1.43) (1.44)

log(fuel) Fuel ($) 21.42 9.20 9.26
(1.58) (1.43) (1.38)

log(cap) Capital ($) 21.21 9.26 9.34
(1.86) (1.67) (1.66)

log(ore) Ore (Tonnes) 22.81 22.11 22.34
(1.81) (1.60) (1.59)

N Number of observations 6706 8895 8247
Note: the standard deviation is shown in parentheses.
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4. Empirical Results and Discussion

The data envelopment analysis (DEA) program was used with DPIN3.0 software to
compute the TFP and its associated components, as indicated in Equations (2)–(8) and the
graph. By addressing the linear programming issue outlined by O’Donnell, DEA computes
the efficiency and other components of TFP [39]. We used the variable return to scale to
calculate the input-oriented technical efficiency of each mine i in period t. To compute the
efficiency estimates, we employed the primal input-oriented technique.

4.1. Technical Efficiency

Figure 3a–c depicts the technological efficiency distribution for copper, gold, and
platinum. There are significant differences in efficiency across mines and areas for all
three commodities. Estimates of mine-level technical efficiency reveal that copper mines
are less efficient at transforming inputs into outputs on average. In other words, enterprises
could have produced the same amount of output while using 40 percent less of their
inputs. The considerable variation in technical efficiency across copper mines can be
attributed to a number of factors, including ore quality, technologies, and mining practices.
These disparities could be attributed to ore quality and technology differences adopted
by different firms. A further examination of the mine-level efficiency of copper reveals
that mines in Portugal and Saudi Arabia have the highest technical efficiency on average,
whereas considerable mine-level dispersion is observed in Australia, Canada, and Laos
(see, Table A1 in the Appendix A).
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Estimates of gold efficiency are provided in Figure 3b. It is noted that the distribution of
efficiency appears to be more negatively skewed, since a huge number of mines demonstrate
a low level of technical efficiency. A thorough examination of mine- and country-level
data on technological efficiency finds significant variation at both the mine and regional
levels. It has been observed that more efficient mines are located in African regions, which
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may be due to ore quality. However, a wide range of efficiency values was discovered in
Ecuadorean, Bolivian, and Canadian mines. These findings are analogous to those of other
researchers who discovered significant technological gaps between mines and locations [14].
Mines in the United States, Russia, and other locations, for example, have lower technical
efficiency, which could be attributed to lower ore grade, as well as differing operating
environments and technologies.

Platinum efficiency estimates show a similar scenario, albeit with a somewhat higher
average technical efficiency. Figure 2c depicts the bimodal distribution of platinum mines’
efficiency, implying that mines are clustered at two points. Platinum’s average efficiency
remains at 0.50, with individual results ranging from very low to highly efficient mines.
Low mine efficiency may the result of several factors, such as geographic location, ore
quality, and technology implementation. Mine size could also be another reason for the
low efficiency of mines. There are many mines that produce a relatively small amount of
platinum, which might have increased the cost of production and lowered the efficiency.
For example, the most efficient platinum mines are located in the United States (0.91),
followed by South Africa (0.87). Australian mines are likewise less technologically efficient.
Global data also show that the most prolific mines are located in South Africa, which
may be due to the ore quality, which makes those mines more efficient and productive.
Due to price instability, the platinum industry has been under tremendous pressure to
pursue cost-cutting and productivity-boosting strategies. These strategies can be accom-
plished by increasing output or reducing the quantity of resources consumed in order to
boost productivity.

Figure 4a–c depicts a correlation analysis between productive capacity and technical
efficiency to further explain the probable efficiency differentials between different plat-
inum mines located in different localities. The logarithm of total production capacity (in
tonnes) is depicted on the vertical axis, whereas the horizontal axis shows the technical
efficiency (i.e., 0.00 to 1.00). At the national level, there is a strong correlation between
production scale and efficiency. For example, copper mines (see Figure 4a) in Australia
exhibit a significant association with scale operations, and technical efficiency means that
greater mine operations may be the result of creative technology adoption. These patterns
seem to be similar in all countries except China, which shows relatively larger dispersion
in efficiency and production scales; hence, the Chinese results reflect weak correlation
compared to mines located in other countries. The mine-level analysis in Canada, Chile,
and South Africa yields similar results. However, it appears that these ties are weak in
Chinese and US mining operations. The relationship between copper mine size and cost
has been examined by many researchers [41–43]. However, there are mixed findings as to
whether or not strong scale economies exist.

The link between gold efficiency and production scales is depicted in Figure 4b. Gold
mining, like copper mining, has a positive relationship between productive capacity and
efficiency. However, unlike copper, the dispersion in gold mines’ efficiency has similar
patterns in all countries. Mining operations’ efficiency can also be influenced by the
different operating environments, such as open-pit and underground operations [44]. For
instance, Ahmad et al., find that open-pit mines appear to be more efficient, perhaps due to
the operations’ scales, which help to increase the mine-level productivity [14].

Figure 4c depicts the link between platinum mine output and efficiency. The findings
show that the scale of production is positively connected to efficiency. Mining efficiency
appears to have no favourable link with scale operations in most countries, except South
Africa, where it shows a relatively positive correlation between production scales and
efficiency. It notable that South Africa produces about 80% of the world’s platinum; hence,
the country’s economy has a considerable impact on global supply.
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4.2. Changes in Productivity and Its Drivers

TFP has been further analysed using global mine-level panel data from three commodi-
ties: copper, gold, and aluminium. The emphasis is on illustrating measures of efficiency
change that explain the primary drivers of TFP. Figure 5 depicts the trend in TFP change
for a selection of commodities.
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Figure 5. TFP change in copper, gold, and platinum (2011–2020).

TFP trends show rises and falls across the timeframe, according to the results. For
example, since 2013, there has been an upward trend in gold TFP change. Copper produc-
tivity, on the other hand, has been falling since 2014. Copper mining productivity may
be declining indefinitely due to rising production costs. Platinum TFP, on the other hand,
shows mixed patterns. Productivity increased until 2016, after which point it continu-
ously dropped.

A further decomposition of productivity is depicted in Figure 6a–c. TFP was divided
into two parts: technical efficiency change and scale mix efficiency change. While technical
efficiency refers to best practices, scale mix efficiency refers to size and scope economies. In
this industry, economies of scale and breadth are critical for determining effective market
structures [45]. In reaction to pricing changes, businesses frequently alter the scale of their
operations and/or the composition of their output and input mixtures. Significant losses in
scale mix efficiency in Australia’s mining sector, for example, have been linked to increases
in labour and capital utilisation over the last ten years. Due to these advances in input
utilisation, sectoral trade terms have also improved. The appropriate course of action for
the government will be determined based on whether rises in company profits are more or
less significant than increases in productivity [38].

Figure 6a describes the changes in copper TFP and associated measures of change,
including technical efficiency and input scale mix efficiency change. While the change in
input scale mix efficiency has been steady after 2016, there has been a continuous decline
in TFP, which seems to be largely driven by technical efficiency. Figure 6b depicts the
gold TFP and its associated components. It is noted that gold TFP has been increasing
since 2013, with a slight dip in 2019. Scale and scope economies seem to contribute to
TFP, whereas technical efficiency has been on decline. Platinum TFP and its associated
components are presented in Figure 6c. Our results show that a change TFP is mainly
explained through changes in technical efficiency, whereas scale mix efficiency shows a
slight decline over time.
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5. Conclusions

This paper examined the TFP and its various divers using global mine-level panel data
of selected commodities (i.e., copper, gold, and platinum). We used rigorous methodologies
to evaluate TFP and its associated components for people, miners, and organisations in
various places. TFP and its components, such as technical efficiency and input-scale mix
efficiency, were computed using a non-parametric approach. We use DPIN3.0 software
to calculate exhaustive TFP measurements for commodity-level individual miners using
the DEA technique. The main advantage of DEA is that it takes no functional form for the
unknown technology. Furthermore, under this approach, (i) no specific assumptions for
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the error term are required, (ii) multiple input and output technologies can be estimated
without any statistical issues (such as endogeneity), and (iii) its implementation is simple,
requiring readily available computer software.

Empirical results show significant disparities in technical efficiency among mines
across different commodities and regions. These differentials in efficiency may be the result
of variation in technology adoption and the ore quality of the commodities under analysis.
A further analysis of the decomposition of TFP into its different components identified
the areas of improvement that could help to increase TFP. For instance, the copper, gold,
and platinum sectors’ TFPs are mainly driven by technical efficiency, suggesting that the
adoption of innovative practices and investment in technology adoption could improve
the overall productivity of these commodities. In addition, the gold sector TFP is also
explained by the input-scale mix efficiency to some extent, suggesting that appropriate
input mix and optimum scale of production could improve the overall productivity of
platinum mining. The findings also suggest that better capacity utilisation of mines and
production scale could help to improve the mining sector’s productivity regarding the
selected commodities.

To our knowledge, this is the first study that provides a detailed examination of
commodity-level productivity and its primary drivers across three commodities. The
findings imply that different operating circumstances and technical heterogeneity values
have effects on mining productivity. New manufacturing techniques and technological
advancements may help the mining sector to enhance output. Furthermore, differences
in regional productivity and its determinants (e.g., South Africa vs. Zimbabwe) provide
policymakers with insights on how to support scale and scope economies through optimal
input mixes.

The current study did not investigate the technological gaps that could impede produc-
tivity across mines and regions. Future studies could investigate the technology gap within
the mining sector and across regions. Furthermore, assessing environmental productivity
trajectories could yield substantial policy consequences, particularly after controlling for
greenhouse gas emissions, which is still on the study agenda for the future.
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Appendix A

Table A1. Copper efficiency.

Country Mean Std. Err. Lower CI Upper CI

Argentina 0.339 0.024 0.292 0.386
Armenia 0.138 0.006 0.126 0.150
Australia 0.427 0.011 0.404 0.449

Bolivia 0.262 0.046 0.172 0.352
Botswana 0.258 0.034 0.193 0.324

Brazil 0.393 0.018 0.358 0.428
Bulgaria 0.357 0.015 0.328 0.386
Canada 0.385 0.009 0.366 0.403

Chile 0.416 0.006 0.404 0.429
China 0.373 0.004 0.364 0.381

Dem. Rep. Congo 0.699 0.007 0.684 0.713
Dominican Republic 0.032 0.004 0.025 0.039

Ecuador 0.370 0.000 0.370 0.370
Eritrea 0.532 0.068 0.399 0.665

https://www.capitaliq.spglobal.com/web/client?auth=inherit&OktaLogin=true#industry/mine
https://www.capitaliq.spglobal.com/web/client?auth=inherit&OktaLogin=true#industry/mine
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Table A1. Cont.

Country Mean Std. Err. Lower CI Upper CI

Finland 0.462 0.024 0.416 0.508
Indonesia 0.468 0.018 0.432 0.504

Iran 0.555 0.014 0.528 0.582
Kazakhstan 0.417 0.018 0.381 0.452
Kyrgyzstan 0.436 0.010 0.417 0.455

Laos 0.599 0.038 0.524 0.674
Mauritania 0.481 0.040 0.403 0.560

Mexico 0.286 0.007 0.272 0.301
Mongolia 0.382 0.013 0.357 0.407
Panama 0.275 0.009 0.258 0.292

Papua New Guinea 0.445 0.022 0.401 0.489
Peru 0.318 0.008 0.302 0.334

Philippines 0.232 0.011 0.210 0.255
Poland 0.654 0.011 0.633 0.676

Portugal 0.736 0.015 0.707 0.766
Russia 0.566 0.012 0.542 0.590

Saudi Arabia 0.708 0.015 0.679 0.737
South Africa 0.093 0.008 0.078 0.108

Spain 0.428 0.030 0.369 0.487
Sweden 0.208 0.014 0.180 0.236
Tanzania 0.117 0.011 0.097 0.138
Turkey 0.756 0.009 0.738 0.774

USA 0.287 0.005 0.276 0.297
Vietnam 0.253 0.017 0.220 0.286
Zambia 0.584 0.009 0.567 0.601

Zimbabwe 0.059 0.004 0.052 0.066

Table A2. Gold Efficiency.

Country Mean Std. Err. Lower CI Upper CI

Argentina 0.393 0.015 0.364 0.422
Armenia 0.262 0.017 0.229 0.296
Australia 0.395 0.007 0.381 0.409

Bolivia 0.410 0.063 0.286 0.534
Brazil 0.289 0.013 0.264 0.314

Bulgaria 0.191 0.028 0.136 0.247
Burkina Faso 0.499 0.014 0.471 0.527

Canada 0.291 0.009 0.274 0.307
Chile 0.182 0.013 0.156 0.208
China 0.223 0.006 0.211 0.235

Cote d’Ivoire 0.486 0.019 0.449 0.523
Dem. Rep. Congo 0.512 0.025 0.463 0.560

Dominican Republic 0.658 0.014 0.631 0.685
Ecuador 0.276 0.212 0.139 0.691

Egypt 0.503 0.015 0.474 0.533
Eritrea 0.266 0.103 0.064 0.467
Finland 0.215 0.022 0.171 0.258
Ghana 0.471 0.008 0.455 0.487
Greece 0.373 0.037 0.300 0.446

Guatemala 0.400 0.056 0.291 0.510
Guinea 0.488 0.020 0.449 0.527
Guyana 0.399 0.036 0.328 0.470

Honduras 0.292 0.024 0.246 0.338
Indonesia 0.502 0.022 0.459 0.546

Iran 0.017 0.001 0.015 0.019
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Table A2. Cont.

Country Mean Std. Err. Lower CI Upper CI

Kazakhstan 0.274 0.017 0.240 0.307
Kyrgyzstan 0.493 0.040 0.415 0.571

Laos 0.225 0.025 0.176 0.273
Liberia 0.452 0.083 0.289 0.616

Mali 0.529 0.020 0.491 0.567
Mauritania 0.309 0.032 0.247 0.371

Mexico 0.201 0.006 0.189 0.213
Mongolia 0.198 0.047 0.106 0.291
Namibia 0.105 0.031 0.045 0.166

New Zealand 0.394 0.018 0.358 0.430
Nicaragua 0.499 0.021 0.458 0.541

Panama 0.032 0.004 0.024 0.039
Papua New Guinea 0.506 0.019 0.469 0.543

Peru 0.207 0.012 0.185 0.230
Philippines 0.284 0.020 0.244 0.325

Poland 0.015 0.002 0.011 0.018
Russia 0.375 0.011 0.354 0.396

Saudi Arabia 0.019 0.003 0.013 0.024
Senegal 0.545 0.029 0.488 0.603

South Africa 0.262 0.010 0.243 0.281
Spain 0.356 0.039 0.279 0.433

Suriname 0.464 0.026 0.413 0.515
Sweden 0.183 0.013 0.158 0.208

Tajikistan 0.338 0.036 0.267 0.410
Tanzania 0.597 0.015 0.568 0.627
Thailand 0.567 0.032 0.505 0.629
Turkey 0.503 0.017 0.470 0.536

USA 0.318 0.010 0.299 0.336
Uzbekistan 0.646 0.006 0.635 0.658

Zambia 0.078 0.003 0.072 0.085
Zimbabwe 0.029 0.002 0.025 0.032
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