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Abstract: This paper describes an innovative method that recursively applies the machine learning
Random Forest to an assumed homogeneous aerographic domain around measurement sites to
predict concentrations and emissions of ammonia, an atmospheric pollutant that causes acidification
and eutrophication of soil and water and contributes to secondary PM2.5. The methodology was
implemented to understand the effects of weather and emission changes on atmospheric ammonia
concentrations. The model was trained and tested by hourly measurements of ammonia concen-
trations and atmospheric turbulence parameters, starting from a constant emission scenario. The
initial values of emissions were calculated based on a bottom-up emission inventory detailed at
the municipal level and considering a circular area of about 4 km radius centered on measurement
sites. By comparing predicted and measured concentrations for each iteration, the emissions were
modified, the model’s training and testing were repeated, and the model converged to a very high
performance in predicting ammonia concentrations and establishing hourly time-varying emission
profiles. The ammonia concentration predictions were extremely accurate and reliable compared to
the measured values. The relationship between NH3 concentrations and the calculated emissions
rates is compatible with physical atmospheric turbulence parameters. The site-specific emissions
profiles, estimated by the proposed methodology, clearly show a nonlinear relation with measured
concentrations and allow the identification of the effect of atmospheric turbulence on pollutant
accumulation. The proposed methodology is suitable for validating and confirming emission time
series and defining highly accurate emission profiles for the improvement of the performances of
chemical and transport models (CTMs) in combination with in situ measurements and/or optical
depth from satellite observation.

Keywords: ammonia; emission modelling; emission inventory; Random Forest

1. Introduction

Atmospheric emissions of ammonia (NH3) can react with nitrogen and sulfur oxides,
contributing significantly to the formation of secondary inorganic PM2.5 and leading to
the acidification and eutrophication of soil and water [1]. The importance of monitoring
atmospheric ammonia is well recognized, defining ammonia as one of the most crucial
substances to monitor among greenhouse gases and particulate matter [2–5]. International
and national regulations on air pollution require a reduction in atmospheric emissions
of ammonia, as for nitrogen oxides (NOx), non-methane volatile organic compounds
(NMVOCs), sulfur dioxide (SO2), and fine particulate matter (PM2.5) [6–8]. Emission
inventories play a fundamental role in the estimation of emission reduction; their accuracy
is a determinant in supporting air quality plans and policy makers [9,10].

In Europe, the agriculture sector contributes around 94% of total ammonia emis-
sions [11], and this datum is confirmed in Italy [12] and in the Po River area, where the level
is 97% [13]. The Po Valley, located in the northern part of Italy, is surrounded by mountains
and is often affected by atmospheric stagnation and thermal inversion conditions. It is char-
acterized by areas with high population density interspersed with heavily industrialized
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and intensive farming areas [14]. According to the national veterinary records office [15],
about 80% of cows, swine, and poultry are bred in the regions of the Po Basin, determining
a higher relative emission density of ammonia compared to the rest of Italy and EU-27 [13].
In northern Italy, livestock contribute around 83% of the total ammonia emissions, and the
use of mineral fertilizers contributes 15%. NH3 emissions from livestock occur during ani-
mal housing, manure storage, spreading, and grazing, though the latter phase is relatively
negligible, considering the intensive level of farming in northern Italy. The contribution of
NH3 emissions to the formation of secondary particulate matter is highlighted for the Po
Basin by different studies [16,17].

In national and local emission inventories, the estimates of total annual NH3 emissions
are based on animal numbers, fertilizer consumption, and emission factors. Emission
factors aim to describe how nitrogen (N) in manure and in fertilizers is lost as NH3 in
the atmosphere. Several factors, including the concentration of N components in manure,
the concentration of NH3 at the exchanging surface and in the atmosphere above the
manure, air turbulence conditions, temperature, and pH, can influence the rate of NH3
emission. Emissions occur primarily after spreading and are also influenced by the viscosity
and dry matter content of the manure applied on a land surface [13]. Emissions from
synthetic fertilizers are influenced by the application technique, chemical composition, and
atmospheric turbulence conditions, which can affect the interphase NH3 concentration [18].
As a matter of fact, atmospheric turbulence seems to affect the release of ammonia in more
than one way. The time modulation of ammonia emissions in a chemistry transport model
(CTM) can be estimated based on time-varying meteorological variables, as reported by
different studies [1,19–25].

The above-mentioned variables are used in several detailed models [26–32], and the
use of machine learning approaches has been investigated for estimating time-varying am-
monia emissions [2,33–35]. As reported by Hempel et al. [2], the development and release
of new algorithms and the increase in data availability also support the implementation of
machine learning approaches in different sectors of agriculture [36].

Machine learning has been employed to differentiate the effects of weather and emis-
sion changes on air quality, such as PM1 composition alterations due to Beijing’s Clean
Air Action Plan [37]. It has also been used to study the variation in NO2, O3, and PM2.5
levels during the COVID-19 lockdown [38–40]. This methodology can be extended to
reactive species like NH3, enabling the analysis of atmospheric impacts and gas-to-particle
conversion influences on NH3 concentration [41].

Neural-network-based chemical transport models learn the complex correlation be-
tween emissions and atmospheric concentrations, and they have been used to enhance
the accuracy of emission inventories and the performance of air quality models through a
back-propagation approach that adjusts the gradient of the loss function, which measures
the deviation between predicted and observed contaminant concentrations [42].

As previously mentioned, there are two primary ways for predicting ammonia concen-
trations: physical methods and machine learning techniques. Physical techniques involve
a lot of variables and can be used at the farm level or for specific manure management
tasks. CTMs are defined from a physical perspective as well and are used on a bigger
scale. They include the chemical reactions and the transport of pollutants, emission models,
and all available information regarding emissions provided by various inventories, but,
generally, they simplify data on emission temporal variation. The estimations of ammonia
emissions for the entire year are disaggregated in CTMs based on overall temporal profiles.
Only in a subsequent reanalysis phase can the emissions be recalculated by comparing
simulation results with observed data. Machine learning has been used in both CTM
combinations [37–41] and single farm resolutions [2].

To estimate ammonia concentrations and emissions with high accuracy, this work in-
troduces a novel approach that applies the machine learning Random Forest iteratively to
an assumed homogenous aerographic region surrounding measurement sites. This method
is interesting since, to our knowledge, there is not a forecast model for emissions and con-
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centrations relating to this subject that is as accurate and that can still preserve complete
compatibility with atmospheric turbulence parameters. The proposed model will be used to
estimate ammonia emission trends, allowing the validation of the annual emission estimates
of emission inventories and the obtainment of useful temporal profiles for CTMs.

This paper is divided into five sections, beginning with this introduction. Section 2
provides information on the ground theory of the methodology, presenting the main
physical hypothesis, the inputs to the model, and the methods of iterating Random Forest.
The validity and reliability of the methodology are shown in Section 3. In Section 4,
the relations between ammonia concentrations, emissions, and atmospheric turbulence
parameters are widely discussed. Finally, the conclusion, limitations, and future direction
of the study are summarized in Section 5.

2. Materials and Methods

The implemented approach is based on some physical and phenomenological as-
sumptions about ammonia emission rates and dispersion. As stated in the fundamental
principles of pollutant dispersion modeling, the observed concentrations of ammonia at the
measuring stations were determined by emissions from various sources close to the stations,
by pollutant transport, deposition, and reactions, as well as meteorological conditions.

It is well known that gaseous ammonia in the atmosphere tends to convert very rapidly
to ammoniacal compounds (NH4+) and that NH3 concentrations decrease quickly within
the first 1–2 km from the sources [15]. Therefore, it is conceivable that relatively nearby
sources determined the gaseous ammonia quantities that were detected.

The following fundamental assumptions form the basis of this work. Firstly, an area
with a radius of 3.6 km was considered for each measurement site, due to the maximum
distance that air travels in an hour with a wind velocity of 1 m/s, which is typical for
the region (Table 1). Secondly, a Random Forest model was trained and tested on the
measured hourly ammonia concentrations, using measured turbulence parameters and a
first guess of the total emission of NH3 as input variables. The first-guess emission value
was defined from the local emission inventory, considering an average local value within
the circled area around the site. Finally, the testing and training of the Random Forest
model was reiterated, correcting the hourly emissions by the ratio between the measured
and estimated concentrations.

Table 1. Ammonia measurement sites, average measured ammonia and wind velocity, annual
surrounding emissions estimates, and main emissions macrosectors. NH3 emissions refer to the total
amounts emitted per year (2014, 2017, and 2019) in each circular area with a radius of 3.6 km.

Station
ID

Measurement
Site

NH3
[µg/m3]

Wind
Velocity

[m/s]

NH3
[t/Year] 2014

NH3 [t/Year]
2017

Agriculture
[%]
2017

Road Transport
[%]
2017

Other
Sources [%]

2017

NH3
[t/Year]

2019

1_RB Bertonico 33.65 1.46 404.9 385.9 99.2 0.2 0.6 371.4
2_SU Colico 4.36 1.26 51.6 50.0 94.1 1.8 4.1 43.8
3_RB Corte de Cortesi 44.5 1.9 698.4 685.9 99.7 0.1 0.2 668.4

4_UB Cremona—Via
Fatebenefratelli 8.78 1.12 205.0 162.1 95.9 2.6 1.5 137.2

5_RB Cremona—Via
Gerre Borghi 15.41 1.16 256.3 222.9 98.0 1.2 0.8 208.6

6_UB Milano—Pascal
Città Studi 9.08 1.82 26.5 28.2 47.6 41.3 11.1 34.2

7_RB Moggio 2.77 1.21 16.9 17.4 86.5 4.7 8.9 13.2

8_UB Pavia—Via
Folperti 7.7 1.11 49.7 70.2 87.6 4.5 7.9 76.3

9_UI Sannazzaro de’
Burgondi 8.38 2.23 58.5 111.4 57.8 0.8 41.4 84.0

10_RB Schivenoglia 16.27 1.68 155.7 132.9 98.3 0.4 1.3 70.9

2.1. Measurement Sites and Data

In this work, a dataset for ten measurement sites located in the Po Basin was developed,
considering the following:

• Hourly measured ammonia concentrations;
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• Hourly measured meteorological variables;
• Ammonia emission estimates.

The dataset covers a nine-year period (start of 2014—end of 2022), except for the
location of Moggio (7_RB), where the time series is from 2014 to the beginning of 2021 due
to a lack of data.

Table 1 presents the identification codes for the different measurement sites, along
with the average values of ammonia concentration and wind speed measured for the entire
dataset. For each site, the table also reports the emission estimates for the surrounding area
of the measurement station for the years 2014, 2017, and 2019. The locations of the sites are
shown in Figure 1.
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2.1.1. Ammonia Measurement Sites

The ammonia measurement sites considered in this study belong to the Air Quality
Monitoring Network of the Regional Environmental Protection Agency of Lombardy
(ARPA Lombardia). The Monitoring Network consists of both permanent stations and
mobile samplers, the former providing, by means of automatic analyzers, continuous data
at regular time intervals. Ammonia atmospheric concentrations are mainly detected by
NOx analyzers, which are based on the principle of chemiluminescence. Thus, starting
from the standardized method (UNI EN 14211:2012) for NOx, besides the molybdenum
converter heated to 315–325 ◦C to convert NO2 into NO, an ammonia analyzer was also
equipped with a converter heated to 750–825 ◦C, which transformed NH3 into NO.

The ten measuring stations differed according to type, including rural background
(RB) (i.e., Bertonico, Corte de Cortesi, Cremona via Gerre Borghi, and Schivenoglia), urban
background (UB) (i.e., Cremona via Fatebenefratelli, Milano Pascal Città Studi, and Pavia
via Folperti), suburban background (SU) (i.e., Colico), and urban industrial (UI) (Sannazzaro
de’ Burgondi), as well as altitude, ranging from 16 m asl (i.e., 10_RB, Schivenoglia) to 1197 m
asl (i.e., 7_RB, Moggio).
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2.1.2. Meteorological Parameters of the Measurement Sites

In this study, several meteorological variables were considered that could potentially
affect the accumulation processes of ammonia in the atmosphere. These variables include
wind direction [◦], precipitation [mm], global solar radiation [W/m2], ambient temperature
[◦C], relative humidity [%], and wind velocity [m/s]. These data were obtained from the
monitoring network of ARPA Lombardia.

Since not all the ammonia monitoring sites had the complete set of meteorological pa-
rameters, it was necessary to consider those from the closest meteorological station/stations
if meteorological data were not available.

Figure 1 also shows the meteorological stations used for the possible completion
of the data. They can be considered representative for the ammonia measurement sites
because they are all located a few kilometers away and are characterized by homogeneous
conditions of use and land cover and altimetry. No additional stations were indicated for
the ammonia measurement sites for which the meteorological dataset was already complete.

Therefore, for the locations of Bertonico (1_RB), Cremona Via Fatebenefratelli (4_UB),
Cremona Via Gerre Borghi (5_RB), and Pavia Via Folperti (8_UB), meteorological data
were downloaded together with ammonia concentration data. On the other hand, for
the locations of Colico (2_SU), Corte de Cortesi (3_RB), Milano Pascal Città Studi (6_UB),
Moggio (7_RB), Sannazzaro (9_UI), and Schivenoglia (10_RB), it was necessary to integrate
the missing data from the nearest meteorological station/stations.

2.1.3. Annual Emission Estimates

Annual emission estimates in the surrounding NH3 measurement sites refer to the
years 2013, 2017, and 2019 and were obtained from the common air emission datasets
developed by ARPA Lombardia in the frame of the “LIFE PREPAIR inventory” (LPi) [13].
Since no emission assessment was available for 2014, the year of the beginning of the time
series considered in this study, the closest data from the inventory edition for 2013 were
used for this year.

The work of updating Po Basin inventories with a high spatial resolution scale at the
municipal level was carried out by environmental protection agencies and the regions of
Lombardy, Emilia-Romagna, Piedmont, Veneto, Friuli Venezia Giulia, Valle d’Aosta, and
Bolzano and the province of Trento. Figure 1 shows the emission density map of NH3 of
the LPi referred to 2017 and the positions of the ten ammonia measurement sites.

NH3 emission sources in the LPi are described according to the SNAP (Selected
Nomenclature for sources of Air Pollution) classification, where several categories may
be identified as: fertilizer application, livestock, traffic, residential/commercial, industry,
and other; and several subcategories may be identified as: animal subcategories, vehicle
subcategories, domestic combustion, agricultural soils, etc.

In the present study and in Table 1, the ammonia sources of interest are grouped
into three categories: “agriculture”, “road transport”, and “other sources”. Other sources
include minor contributions to ammonia emissions from: other sources and absorptions,
non-industrial combustion, waste treatment and disposal, energy production, and fuel
transformation. The bottom-up emission inventory was obtained by very detailed geo-
graphic data (e.g., municipal number of livestock units); these were then implicitly consid-
ered in the emission estimates, with more details reported in Marongiu et al. [13]. The LPi
was obtained by multiplying the activity levels by the corresponding emission factors and
aggregating the values for all municipalities, all sources, and all fuel types during a full
year. The specific equation is reported in the following:

Em = ∑
s

∑
f

Is,f,m × EFs,f (1)

where:

Em = NH3 annual emission for the municipality;
s = source type;



Air 2024, 2 43

f = fuel type;
Is,f,m = activity indicator;
EFs,f = NH3 emission factor.

The compilation of inventories on a municipal scale is comparable, despite the many
subjects involved, thanks to the use of the same “INEMAR database” modeling system,
which follows the guidelines of the EEA [9,10].

An estimation of emissions was possible thanks to high-resolution maps from the
LPi, developed at a municipal level. A circle with a radius of 3.6 km was set around the
measuring station, and the quantity of ammonia emitted relative to that area was extracted.
By intersecting the map of the LPi municipal areas with the circle area, it was possible
to calculate the portion of the municipal area reported that is located within the area of
the measuring station. The total emission for each station (Em) is given by the sum of the
LPi emissions of individual municipalities calculated in proportion to how much of their
territorial area falls within the area around the measuring station:

Es =
n

∑
m=1,2..

Em × AC
⋂

m

Am
(2)

where:

Es = emission for each station;
Em = total municipal NH3 emission;
Am = total municipal area;
AC

⋂
m = municipal area within circle area station.

The overall dataset examined in the present study was characterized, with respect to
previous experiences of data collection for Agrimonia [43], for the use of the bottom-up LPi,
together with the hourly data on ammonia concentrations and the main meteorological
parameters, in long-term time series.

2.1.4. Machine Learning Method and Random Forest

The entire dataset encompasses 626,646 valid hourly observations of ammonia con-
centrations and atmospheric turbulence parameters. The correlation parameters were
calculated both for the entire dataset and considering each site separately. This analysis was
extended by considering different quartiles for both single stations and the entire dataset
(Table S1 in the Supplementary Materials). The correlation analysis did not reveal any
important correlation between concentrations and atmospheric turbulence indicators. This
suggested the implementation of a more sophisticated machine learning approach.

Hempel et al. have investigated how the selection of training data and modelling
approach affects the estimation of ammonia emissions from a naturally ventilated dairy
barn [2]. In their work, they concluded that ensemble methods of gradient boosting and
Random Forest gave the best predictions for emissions, confirming that machine learning
approaches can improve emissions predictions.

This study was based on the Random Forest method: randomForestSRC [44–46],
implemented in a CRAN-compliant R-package [47], using fast OpenMP parallel processing
to construct forests for regression; classification; survival analysis; competing risk analysis;
multivariate, unsupervised, quantile regression; and class imbalanced q-classification [47].
The package implements Breiman Random Forests [48] in a variety of problems.

The approach called Random Forest (RF) can improve ensemble learning by injecting
randomization into the base learning process [48]. In RF, the predictions are obtained by
means of the trees on feature subsets [49]. This approach has been extended in Random
Survival Forest (RSF), developed by Ishwaran et al. [46–50]. RF is a method that averages
trees and develops an ensemble by a randomization in the learning process in two ways:
random sampling of the data to grow a tree and random feature selection.



Air 2024, 2 44

2.1.5. Sampling of Training Data and Cross-Validation

The hourly emission flux of ammonia F_NH3 [kg/h] must be considered as an input
variable of the machine learning model together with atmospheric turbulence parameters.
The Random Forest was applied, simulating each measuring site, as reported in Figure 1,
considering measured hourly values of: NH3 concentration, temperature, precipitation,
wind intensity and direction, solar radiation, humidity, and first-guess hourly ammonia
emissions. The initial value for the ammonia emission flux was estimated for each location
by the LPi in 2017, as detailed in Section 2.1.3, and is reported in Table 1. The dataset was
filtered, omitting missing values and according to NH3 concentrations less than the 99th
percentile. For training and testing operations, the dataset was randomly divided into two
subsets: one containing 70% of the data for training and the other containing the remaining
30% for testing. Figure 2, for the Schivenoglia site (10_RB), illustrates the initial assumption
and subsequent nine iterations of the estimated ammonia flux, “emi_1”, during a sample
period. The iterations adjust the initial ammonia flux, which is multiplied by the ratio
between the measured and predicted concentrations for each iteration, as displayed in the
lower section.
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estimated emission flux for each model iteration. Concentrations: comparison between the predicted
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The procedure develops as previously described, selecting and reincorporating new
random subsets for training and testing. With each iteration, the predictive performance
progressively enhances due to the refinement of the emissive input. During the first
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iteration, the algorithm identifies a set of atmospheric turbulence parameters favorable to
ammonia accumulation in the atmosphere. Consequently, the concentrations, “conc_1”, in
some cases tend to overestimate the concentration compared to the measured values.

The predictions estimated in the first iteration depend only on the variability in the
atmospheric conditions and do not consider real activity levels and other source-specific
variables. From the second iteration, the model corrects the hourly varying emissions, and
the predictions vary, smoothing some peaks.

3. Results

Figure 3 illustrates the iterative enhancement of the correlation between predicted
and observed concentrations at each of the ten stations. The starting point is the constant
emission scenario, and it is clear that all sites exhibit similar trends through the model’s
iterations. Notably, the accuracy of the comparison between calculated and predicted
values significantly improves by the second and third iterations. In the elaboration of
training and testing for each measurement site, the model performances for the predictions
on the test subsets were quite like those obtained in the training phases.Air 2024, 2, FOR PEER REVIEW 9 
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Table 2 presents the model’s performance metrics, including R-squared estimates and
error rates, for each monitoring site, the training and testing datasets, and each iterative
step. The data clearly show a very similar behavior for all the monitoring sites, with
R-squared values higher than 0.9 from the second or third iteration.

Table 2. Performance indicators at each iteration step for training and testing in each site.

Station
ID 1_RB 2_SU 3_RB 4_UB 5_RB

Trial n R-squared Error
Rate R-squared Error

Rate R-squared Error
Rate R-squared Error

Rate R-squared Error
Rate

Train

1 0.230 331.62 0.194 6.20 0.204 959.78 0.219 31.25 0.143 98.19
2 0.886 49.31 0.902 0.75 0.885 137.53 0.888 4.51 0.857 16.50
3 0.961 16.98 0.969 0.24 0.961 46.73 0.963 1.50 0.950 5.73
4 0.985 6.50 0.987 0.10 0.983 20.09 0.985 0.61 0.982 2.02
5 0.993 3.00 0.994 0.05 0.991 10.27 0.993 0.30 0.992 0.95
6 0.996 1.79 0.996 0.03 0.995 5.98 0.996 0.18 0.995 0.57
7 0.997 1.21 0.997 0.02 0.997 3.90 0.997 0.12 0.996 0.42
8 0.998 0.87 0.998 0.02 0.997 3.12 0.998 0.09 0.997 0.36
9 0.998 0.77 0.998 0.02 0.998 2.53 0.998 0.08 0.998 0.28

Test

1 0.229 342.87 0.201 6.12 0.202 950.34 0.224 31.47 0.143 96.61
2 0.883 51.81 0.900 0.77 0.888 134.67 0.891 4.40 0.858 15.78
3 0.961 17.29 0.969 0.23 0.960 49.33 0.963 1.50 0.954 5.08
4 0.984 6.97 0.987 0.10 0.984 18.65 0.985 0.59 0.983 1.93
5 0.993 3.15 0.993 0.05 0.991 10.44 0.993 0.29 0.992 0.94
6 0.996 1.69 0.996 0.03 0.995 6.28 0.996 0.17 0.995 0.59
7 0.998 1.09 0.997 0.02 0.997 4.25 0.997 0.12 0.996 0.44
8 0.998 0.92 0.998 0.02 0.998 3.02 0.998 0.08 0.997 0.31
9 0.999 0.61 0.998 0.01 0.998 2.68 0.998 0.07 0.997 0.40

Station
ID 6_UB 7_RB 8_UB 9_UI 10_RB

Trial n R-squared Error
rate R-squared Error

rate R-squared Error
rate R-squared Error

rate R-squared Error
rate

Train

1 0.161 18.69 0.286 6.05 0.2545 21.588 0.1653 21.253 0.1793 70.994
2 0.907 2.06 0.914 0.72 0.8998 2.8897 0.8862 2.9025 0.8895 9.5155
3 0.971 0.64 0.967 0.27 0.9677 0.9373 0.9646 0.9051 0.9673 2.8177
4 0.990 0.23 0.985 0.13 0.9866 0.3831 0.9863 0.351 0.9879 1.033
5 0.995 0.11 0.992 0.07 0.9933 0.1942 0.994 0.1539 0.9939 0.5218
6 0.997 0.07 0.995 0.04 0.9957 0.1232 0.9968 0.0827 0.9962 0.3319
7 0.998 0.05 0.996 0.03 0.9969 0.0883 0.9979 0.055 0.9972 0.2448
8 0.998 0.03 0.997 0.02 0.9974 0.0734 0.9984 0.0401 0.9976 0.2082
9 0.999 0.03 0.998 0.02 0.9978 0.0621 0.9988 0.0317 0.9978 0.1859

Test

1 0.159 18.45 0.287 5.90 0.2549 21.308 0.1581 21.741 0.1906 68.923
2 0.905 2.10 0.912 0.74 0.9 2.8846 0.8891 2.8536 0.8941 9.1244
3 0.973 0.60 0.967 0.28 0.9665 0.9531 0.9654 0.886 0.9675 2.7895
4 0.989 0.24 0.985 0.12 0.9861 0.4072 0.9876 0.3139 0.988 1.0534
5 0.995 0.11 0.992 0.07 0.9933 0.1923 0.9941 0.1502 0.9942 0.4999
6 0.997 0.06 0.995 0.04 0.996 0.1144 0.9966 0.0867 0.9965 0.2949
7 0.998 0.04 0.996 0.03 0.997 0.0871 0.998 0.0512 0.9972 0.2417
8 0.998 0.04 0.997 0.02 0.9977 0.0679 0.9986 0.0344 0.9977 0.2012
9 0.999 0.03 0.998 0.02 0.9976 0.0713 0.9988 0.0303 0.9976 0.2131

The ammonia daily mean concentrations during the years 2014–2022 in site 3_RB
are shown in Figure 4. The comparison of the predictions and the data obtained by the
measurements shows very good agreement. On the other hand, the decoupling between
emission rates and concentrations is more evident in some periods of the years 2020 and
2021. The comparison between emission rates and concentrations is based on real valid
data; no data completion procedures are applied in Figure 4. The developed methodology
is not affected by the absence of valid data, which can be a more relevant issue in the
calculation of annual and monthly total emission rates.
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Figure 4. Time series of daily average concentrations of measured and predicted ammonia [µg/m3]
and total daily emissions for 3_RB [kg NH3/day].

The proposed methodology allows the calculation of annual, monthly, and daily
variation in emission rates. As reported by Asman et al. [51], emission rates can show a
peak in the afternoon related to warmer temperatures and higher turbulence. Farming
operations can vary during the year, reasonably showing peaks in Spring and Autumn.

The estimated hourly emission rates and measured mean concentrations for all the
sites are reported in Figure 5 and in Figure S1 of the Supplementary Materials and clearly
show a maximum during the afternoon or late morning in a majority of the sites. The
emissions profiles can also be more complex, considering that ammonia emissions can
occur several times after specific operations in livestock activities.
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In Figure 6 and in Figure S2 of the Supplementary Materials are shown the monthly
average emissions profiles for each site compared with similar elaborations for measured
ammonia concentrations, confirming the presence of the peaks in Spring and Autumn.
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A data completion calculation is considered in Figure 7. The total annual emission
rate is calculated by applying a coefficient defined as the ratio between the total hours in
the year and the number of valid data. Figure 7 clearly shows how the calculated emissions
obtained by the methodology described in Section 2 are in very good agreement with the
LPi. The spatial variation in emissions seems to show a better agreement than time series
for certain sites.
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Figure 7. Total annual emissions of ammonia [t/year] in different sites for three years: 2013, 2017,
and 2019; comparison of calculated data from this study and the LPi.

The motivation can be difficult to define; the emission inventory is affected by different
levels of uncertainties regarding emission factors and by the annual and intra-annual
fluctuation in the number of animals bred. The field application of manure can occur in
different days of the year, even confined to the cultivation seasons, but can also occur
not in the same municipality of the farm in which the animals have produced the excreta
nitrogen flow.

CTMs need the allocation of the annual emission inventory to hourly timesteps.
The applied temporal patterns play an important role, affecting the simulation results
both in diagnostic and scenario elaborations. Veratti et al. [17] report an overview of
the temporal distribution in northern Italy of NH3 emissions, applying four different air
quality modelling systems based on three chemical transport models (CHIMERE, FARM,
and CAMx) [52–58]. The minimum and maximum monthly NH3 emissions are reported
in Figure 8 and compared to the calculations obtained by this study for the site 3_RB,
considering the whole time series. Table 3 summarizes all the data used for the comparison
and the details about the different sources.

The site 3_RB can be considered as representative of the area with a higher emission
density in the domain. The modelling emission profiles are in quite good agreement with
the calculations obtained by this study. The main peaks are visible according to the period
of field application of manure. The emissions calculated in this paper can show a wide
variability in the years with the same order of magnitude as the range reported in the CTM
modelling systems.
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Table 3. Summary of characteristics of data employed in the monthly ammonia emission flow comparison.

Data Spatial
Resolution

Time
Resolution Years Method Source Ref.

DECSO v6.1 0.2◦ × 0.2◦ Monthly 2020–2022
Satellite observation (CrIS)
and chemical transport
model (DECSO v6.1)

(SEEDS website):
https://www.
seedsproject.eu/data/
monthly-nh3-emissions
(accessed on 5 May 2023)

[59]

VERATTI
et al., 2023 All grids Monthly 2019

Four air quality modelling
systems based on three
chemical transport models

Veratti, G. et al. (2023)
Impact of NOx and NH3
Emission Reduction on
Particulate Matter across
Po Valley: A
LIFE-IP-PREPAIR Study

[17]

CAMS-GLOB v6.1 0.1◦ × 0.1◦ Monthly 2000–2022

Annual emission (EDGAR
v4.3.2) with temporal profile
from CAMS-GLOB-TEMPO
(2000–2012) or a linear trend
fit to the 2012–2014 data
from the CEDS inventory

Emissions of Atmospheric
Compounds and
Compilation of Ancillary
Data website [60]

[61]

HTAPv3 0.1◦ × 0.1◦ Monthly 2000–2018

Ad hoc global mosaic of
anthropogenic inventories
that use EMEP data
(CAMS-REG) for Europe

Emissions of Atmospheric
Compounds and
Compilation of Ancillary
Data website [60]

[62]

EDGAR v4.3.2 0.1◦ × 0.1◦ Monthly 2010

The Emissions Database for
Global Atmospheric
Research uses the same
anthropogenic sectors,
covers the same period
(1970–2012), and utilizes the
same international activity
data that are used for
greenhouse gas emissions

Emissions of Atmospheric
Compounds and
Compilation of Ancillary
Data website [60]

[63]

https://www.seedsproject.eu/data/monthly-nh3-emissions
https://www.seedsproject.eu/data/monthly-nh3-emissions
https://www.seedsproject.eu/data/monthly-nh3-emissions
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Guevara et al. report that the CAMS-REG-TEMPO monthly and daily profiles for livestock
are assumed to be dependent on temperature and ventilation rates, while the hourly profiles
are based on fixed weight factors due to a data limitation issue [64]. Figure S3 shows for each
measurement site the comparison of NH3 monthly emissions variability between this study
(2014–2022) (blue bars), CAMS-GLOB-ANT (2014–2022) (orange) [61,65,66], and Livestock
CAMS-REG-TEMPO (2014–2020) (black) [64,65]. The comparison demonstrates how the
profiles derived in this study using in situ measurements have greater variability for
each month and can exhibit multiple relative peaks throughout the year. The temporal
profiles reported by Veratti et al. [17] were obtained from four different air quality modelling
systems applied to the Po Basin. They are fixed temporal profiles derived from an estimation
of the potential activities associated with livestock and manure management throughout
a given year. In comparison to the findings of this study, the presence of a double peak
during the year appears to be confirmed at numerous sites. The substantial variability in
ammonia emissions found in this work shows that developing modelling systems with
dynamic emission input will lead to improved modelling of ammonia concentrations and,
in the future, a better understanding of the formation mechanisms of particulate matter.

4. Discussion

The developed methodology consists in the solution of the inverse problem of esti-
mating the ammonia emission rate in a restricted area nearby a monitoring station. The
approach of inverse modelling allows the quantification of ammonia emissions using
observed atmospheric concentrations and turbulence parameters.

The calculation of the emission rates in conjunction with measured atmospheric con-
centrations is a common goal in solving inverse problems using a Bayesian framework [67].
Also, in this case, the authors restricted the domain to short-range transport using a Gaus-
sian plume-type solution as a forward solver for the transport of particles from fugitive
sources. In the application of a Bayesian framework, it was reported that the authors would
avoid so-called “inverse crimes” [68]. Inverse crimes happen when numerical methods
yield unrealistically optimistic results.

To evaluate the reliability of the estimates, the link between emissions and concentra-
tions was examined, showing that the NH3 concentrations and the calculated emissions are
compatible with physical atmospheric turbulence parameters.

A decision tree was applied for describing observed concentrations with air turbulence
parameters time-varying with NH3 emission rates. The applied methodology is available
in the R package: “rpart” [69]. The decision tree learning method applied to each site aims
to construct a model that describes ammonia concentration using atmospheric turbulence
parameters. In the simulated tree structures, leaves represent class labels for various NH3
concentrations, while branches reflect feature combinations on atmospheric turbulence
parameters that result in those class labels. Each point in Figure 9 is defined by ammonia
atmospheric concentrations and the estimated emission rate. The tree learning was ap-
plied, assigning to each point the corresponding class labels due to the range of possible
turbulence parameters.

Figure 9 shows for each site the variation in atmospheric concentrations of ammonia
with the increase in the calculated emission rates. The decision tree identified different
levels of possible NH3 atmospheric accumulation at a fixed emission level, highlighting
the possible role of meteorological conditions. As will be discussed below, the results are
reasonable from a physical point of view.

The data in Figure 9 are most dispersed, with an increase in the importance of the at-
mospheric turbulence parameters with respect to emissions. This analysis is also confirmed
by the correlation between measured ammonia concentrations and ammonia emissions
reported in Table S2 in the Supplementary Materials. An R-squared value around 0.9 was
calculated for station 9_UI (industrial sites), which confirms, in Figure 9, a direct relation
between emissions and concentrations. In the case of the industrial site 9_UI, the analysis
was not able to identify a specific turbulence pattern.
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The lowest correlation between emissions and concentrations was obtained for station
7_RB (R2 = 0.2), which shows a very wide dispersion of data in Figure 9. Considering the
results of the LPi in Table 1, sites 7_RB and 9_UI have specific peculiarities: the first is
placed in the lower emission density area of the domain and the second is characterized by
very different emissions sources (industrial) compared to the other sites (agriculture).

For the remaining measuring stations, higher temperatures, higher solar radiations,
and lower wind velocities seem to favor the accumulation of gaseous ammonia in the at-
mosphere.

Considering station 1_RB, an emission rate of 40 kg NH3/h determines atmospheric
concentrations in the range of 10–40 µg/m3. This variation can be explained considering the
role of solar radiation and wind velocity. Higher values of solar radiation seem to determine
higher concentrations with constant emissions. The role of wind velocity was identified,
as a second actor, playing in a different way. At a fixed range of thermal radiation, higher
wind strength will decrease the concentrations, allowing a better atmospheric dispersion.

The main variables identified show that, for the same emission, the meteorological
parameters that allow a greater accumulation in the atmosphere are very similar to those
used for the definition of atmospheric stability classes. Atmospheric turbulence can be
categorized into six stability classes, ranging from the most unstable or turbulent (low wind
speed and high thermal radiation) to the most stable or least turbulent (high wind speed
and low insolation, as during the night). The results of the study do not allow us to assess
whether the Gaussian plume-type solution can be used to further optimize the results, even
if the low influence of wind direction is confirmed, this having been found only in two sites,
2_SU and 10_RB, and suggesting the presence of a specific source of ammonia emissions.

The scarce impact of wind direction partially confirms the lower influence of emis-
sions at the outer range of 3.6 km around the site or the homogeneity of the emission
fluxes in all the immediate neighboring areas. Also, the nature of the emissions from
livestock and manure management can play a relevant role, these being emitted at ground
level without stack velocity and with time delay after agriculture activities, as in manure
field applications.

Calculations have shown that there are no distinct correlations between variables of
atmospheric turbulence and the measured concentrations of ammonia, and these variations
occur unpredictably depending on the considered site (Table S1, Supplementary Materials).
Local geographical conditions and activities mainly in agriculture, as well as proximity
to emission sources, play a pivotal role in atmospheric ammonia concentrations. The
correlation of concentrations with emission rates (Table S2, Supplementary Materials)
varies significantly based on these factors at each site. This confirms the reactive nature of
ammonia, whose concentration rapidly fluctuates, which is also due to its easy conversion
into NH4+ and then into particulate matter.

The implemented methodology normalizes the input variables: atmospheric turbu-
lence variables and emission rates. Figure 10 depicts a sensitivity analysis of the final
computed concentrations and emissions achieved with two alternative first values of emis-
sions. The results are displayed for station 3_RB with beginning emissions of 668 t/year
(C_High and E_High) and 0.1 t/year (C_Low and E_Low).

The atmospheric concentrations are predicted with the same accuracy regardless of
the initial inventory, confirming the reliability of the proposed approach and the high
accuracy compared to predictions obtained using only meteorological parameters (C_Met)
and emission rates (C_Emi).

The computed emission rates shown in Figure 10 were obtained from different first
emission inventories and exhibit the same temporal trend, but with a proportionate factor
due to the variable normalization. A calibration curve based on annual average measured
concentrations and annual emissions could provide a plausible scaling and forecast of the
initial values for emissions.
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Figure 10. Sensitivity analysis on station 3_RB with two different starting emissions: lev1 = 668 t/year
and lev2 = 0.1 t/year. Atmospheric concentrations in [µg/m3] and emission estimates of NH3 in
[kg/h]. Concentrations: C_Low starting emission on lev2, C_High starting emission on lev1, C_Emi
calculated concentrations only considering emissions obtained from RF, C_Met calculated by RF only
considering atmospheric turbulence parameters. Emissions: E_High calculated with starting value
lev1 and E_low calculated with staring value lev2.

Figure S4 in the Supplementary Materials depicts the link between the measured data
and the emission estimations from the LPi utilized in this work, revealing a strong linear
correlation, with an R2 greater than 0.93.

5. Conclusions

In this study, a machine learning methodology for estimating atmospheric concen-
trations and emission rates based on atmospheric turbulence parameters has been imple-
mented by recursive application of Random Forest. The proposed iterative process for the
determination of the emission rates of NH3 separates the effects of meteorology from the
variation in space and time of the overall effects of the emission sources.
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Each subsequent iteration improves the ability to predict ammonia concentrations,
that is, gradually, the self-learning process inherent in the methodology unfolds and is
strengthened from time to time by analyzing new data.

The proposed methodology provides very good accuracy in predicting time-varying
ammonia concentrations compared with measured data in different sites of the consid-
ered domain.

The emission rates calculated in this study are compared with the main results of the
emission inventories estimated for the investigated area, considering both their spatial and
temporal variation. This comparison, with very encouraging results, is very important to
ensure consistency between the estimated data, determined on an hourly basis, with the
available and estimated independent data extracted at the same site but on an annual scale.

The goal of an emissions Inventory is to offer the most complete assessment of the
sources present in a given area and year. However, it does not account for the unpredictabil-
ity of emissions caused by meteorological conditions or oscillations in activity levels. The
approach in this study uses data collected in situ or via satellite to estimate the variability
in emissions (pressure) in relation to modulations of observed concentrations (state).

Further analysis involved the monthly emission profiles estimated by the study, which
agree with the main assumptions documented in air quality modeling or in inverse calcu-
lations from satellite observations and modeling simulations and with the main physical
features from previous studies. The predicted emission rate profiles are reasonable, con-
sidering seasonal variation in temperature and solar rations and the possible programs in
agriculture activities.

Considering the hourly time resolution, the emission profiles can show very high
variability. Only a minor part of this variability can be explained by atmospheric turbulence
parameters, and it can be reasonably linked to changes in the emission sources. At a very
local scale, the field application of manure can occur in a different period of the year even
in the same season and can also be affected by different parameters. The local presence of a
certain number of livestock units cannot be always linked to the emissions of ammonia in
all the manure management phases, the possible treatment and field application not always
being located in proximity to the housing structure.

As a matter of fact, the analysis of measured ammonia concentrations does not show
a recursive pattern, suggesting that, at a very local scale, the ammonia emission rate and
its time series can be very variable. This aspect must be considered in the development of
bottom-up emission inventories and in their use and application in air quality simulations.

The presented methodology considers relevant hypotheses on the chemical and physi-
cal behavior of ammonia in the atmosphere, assuming that the measured concentrations of
gaseous NH3 were determined by sources relatively close by. The presence of transport
fluxes of this pollutant outside or inside the considered area could affect the calculation of
the emission rates. A possible solution of this limitation is to consider in the calculation the
effect of transport fluxes for those stations showing an effect of wind direction. As reported
in Figure 9, wind direction has been identified only in a very limited number of sites: 2_SU
(placed in a valley) and 10_RB (probably affected by a specific source).

The method developed in this paper could be applied to CTM simulated concentra-
tions together with in situ measurements and/or optical depth from satellite observations
(e.g., Copenicus Atmospheric Monitoring Services). The proposed methodology can be
extended to the points of an entire area considering the data collected by the satellite and is
suitable for being extended to further applications considering the interactions of gaseous
ammonia with atmospheric acid gases in the formation of ultrafine particulate matter. CTM
models could benefit by applying this methodology because they could use a dynamic
emissive input obtained from in situ measurements or satellite data processing, as opposed
to the more common approach, which uses average monthly, weekly, and hourly time
profiles. It could be used to determine time series for specific tracers or contaminants,
including levoglucosan, for biomass burning sources and heavy metals.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/air2010003/s1, Table S1: For each reference site, the correla-
tion matrix percentages between meteorological turbulence variables and ammonia concentrations,
divided into quartiles; Figure S1: Average emission fluxes [kg/h] for each hour of the day com-
pared to average measured ammonia concentrations [µg/m3]; Figure S2: Average emission fluxes
[kg/h] for each month of the year compared to average measured ammonia concentrations [µg/m3];
Figure S3: Comparison of NH3 monthly emissions variability between this study (2014–2022)
(blue bars), CAMS-GLOB-ANT (2014–2022) (orange) [61,65,66], and Livestock CAMS-REG-TEMPO
(2014–2020) (black) [64,65]. Values are expressed as ratios between monthly and annual totals for
each year; Table S2: Correlation test between ammonia flux estimates and measured ammonia con-
centrations; Figure S4: Calibration curve of the initial values of the emissions with the annual average
concentrations of measured ammonia in different sites.
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