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Abstract: Gout is at least three times more prevalent in males than in females. However, concurrent
with rising total gout prevalence, complex factors, including comorbidities, diet, lifestyle, and aging,
have promoted higher gout prevalence in females. This narrative review focuses on summarizing
recent developments in the landscape of gout in females and the mechanisms involved. New
knowledge on sex hormone effects on both urate-excreting and urate-reabsorbing transporters and
higher hypertension and chronic kidney disease prevalence in females compared to males may
help explain why gout incidence rises robustly after menopause in females, to approach that in
males. Racial and ethnic factors, risk profiles based on heritable genetic polymorphisms of urate
transporters, diet, body mass index, and lifestyle factors differ according to sex. In addition, sex
differences in clinical phenotypes, outcomes of gout, and non-gout illnesses include more frequent
comorbidities, more pain and disability during gout flares, different perceptions of disease burden,
and more frequent severe cutaneous hypersensitivity reaction to allopurinol in females. Collectively,
such findings support the potential clinical benefits of tailoring gout and hyperuricemia treatment
according to sex.

Keywords: gout; hyperuricemia; ABCG2; SLC2A9; urate transporter; alcohol; fructose; COVID-19;
chronic kidney disease; hypertension

1. Introduction

Gout is a highly prevalent inflammatory joint disease that develops in individu-
als with hyperuricemia, with consequent tissue deposition of monosodium urate (MSU)
crystals [1,2]. In the USA, the most recent published gout prevalence is estimated at 5.1%
of adults, with ~12 million adults affected by the disease [3]. Urate, the end product of
purine metabolism, is normally excreted mainly (~70%) by the kidney and to a lesser degree
(~30%) via transport into the gut. Multiple heritable and acquired factors that regulate
urate transport in the kidney and the gut and affect urate production modulate urate home-
ostasis and promote hyperuricemia [4–8]. MSU crystal deposition is promoted by factors
including altered articular tissue extracellular matrix homeostasis [9,10]. The crystals can
trigger an inflammatory cascade mediated in large part by NLRP3 inflammasome activation
and the release of IL-1 [1,11], thereby resulting in acute flares of inflammatory arthritis
superimposed on chronic synovitis [12,13]. A mixed granulomatous, fibrotic, chronic tissue
inflammatory reaction to MSU crystal deposits mediates the formation of articular and
subcutaneous tophi and the progression to erosive joint disease [12,14].

Gout remains a male-predominant disease, with male-female sex ratio at least
3:1 [2,15–21]. However, the sex difference for prevalence narrows in association with
a sharp rise of incident gout in females after menopause [22]. For example, the male
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to female ratio was only 2.3 in those over 70 years (yrs)of age in a study conducted in
the U.K. [23]. Since gout in females may be less well recognized clinically [24], gout is
possibly under-reported in females. Regardless, at least ~5% of elderly females in the
USA self-reported the diagnosis of gout [25]. Of all female gout patients, only 1–4.5%
have premenopausal onset [23,26]. In these uncommon cases, renal dysfunction such as
nephropathic effects induced by calcineurin inhibitors and interstitial nephropathies due
to analgesic abuse, lead nephropathy, and strong genetic risk factor(s) are typically the
driving force in developing hyperuricemia and gout [27].

Gout has increased in incidence over the last few decades in the USA, many other
developed countries, and many less well-developed nations [2,3,17,28]. Multiple stud-
ies [4,15,23,29–56] have detailed and illuminated the epidemiology and risk factors for gout
in females. Different clinical characteristics in female gout have been reported [6,46,49].
However, the precise mechanisms that drive these sexual differences still remain to be elu-
cidated. This narrative review summarizes these and other recent developments, provides
pathophysiologic perspectives, and addresses the remaining questions in the landscape
of gout in females. The literature cited was chosen from MEDLINE English language
literature searches. The search strategy aimed to identify, particularly but not exclusively
for the last 7 years, relevant papers published on gout, urate handling, and sex differences,
using combination terms of ‘gout’, ‘sex’, ‘women’, ’uric acid’, ’female’.

2. Mechanisms That Decrease the Gout and Hyperuricemia Sex Ratio after Menopause
2.1. Serum Urate Levels According to Sex

Overall, serum urate is unequivocally lower in females than males [57]. For example,
in the USA, mean serum urate in males was recently estimated at 6.04 mg/dL, compared
to 4.79 mg/dL in females [58]. In a recent Austrian study, females with an average age
of 51 had a mean serum urate 4.10 ± 1.15 mg/dL vs. 5.29 ± 1.2 mg/dL in males with
an average age of 41 [59]. Female gout patients develop gout at an older age than male
patients, and female gout patients tend to have more comorbidities that promote hyper-
uricemia, most notably so for hypertension (HTN) and chronic kidney disease (CKD) [55].
Concordantly, the sex difference of serum urate lessens with increasing age, but especially
so after menopause [60]. For example, in a study of 58,870 Korean females, the prevalence
of hyperuricemia (defined as >6.0 mg/dL in females) was 2.7% in the pre-menopause
population and 6.7% in the post-menopause population [61].

A substantial limitation of many studies of serum urate in females with hyperuricemia
is estimated based on standard deviations from the mean for serum urate in females, with
“hyperuricemia” defined at a lower serum urate in females than males. In this regard,
National Health and Nutrition Examination Survey (NHANES) data from 2015–2016
estimated the prevalence of gout in males to be 5.2% [4.4–6.2%] and 2.7% [2.0–3.8%] in
females [58]. In that study, when hyperuricemia was defined as >7.0 mg/dL, only 4.2%
[3.3–5.3%] of females were hyperuricemic compared to 20.2% [16.6–24.3%] of males. In
our opinion, the conventional physiologic definition of hyperuricemia (greater than either
6–8 or 7.0 mg/dL), based on the predominant evidence for limited urate solubility in a
physiologic solution, should be applied universally to both sexes to support biologic rigor
in studies in this field and to allow direct translatability to gout.

2.2. Effects of Sex Hormones on Urate Transporters

The forces driving male predominance in gout prevalence start with differences in
androgen and estrogen sex hormone effects [62]. In this light, medical androgen deprivation
therapy lowered serum urate in prostate cancer patients [63]. Moreover, testosterone
administration in female to male transgender individuals significantly increases serum
urate compared to baseline at 2 years [64]. Progesterone level was negatively correlated
with serum urate level in premenopausal females, whereas follicle stimulating hormone
(FSH) was positively correlated with serum urate level [65]. Differences in sex hormones
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lessen after menopause, and postmenopausal hormone replacement therapy in females
decreases the risk of incident gout [44].

The uricosuric effects of estradiol appear substantial. In this context, estrogen adminis-
tration to male to female transgender people not undergoing orchiectomy is associated with
decreased serum urate and increased renal urate fractional excretion [64]. Mechanistically,
estrogen suppresses the murine kidney protein levels of urate-reabsorbing transporters
such as urate transporters URAT1 and GLUT9 [66]. Estrogen downregulates GLUT9, at
least partly, post-transcriptionally via estrogen receptor (ER)-beta induced proteasomal
degradation [67].

Serum urate-regulating effects of sex hormones are not limited to renal tubule trans-
porters (Table 1). A prime example is that estradiol upregulates intestinal ATP binding
cassette subfamily G member 2 (ABCG2) expression through the phosphoinositide 3-kinase
(PI3K)/Akt pathway [68]. ABCG2 is a renal and gut epithelial cell-expressed urate-excreting
transporter. ABCG2 exerts major regulatory effects by the common ABCG2 variant Q141K
encoded by ABCG2rs2231142 [69] on the heritable risks of hyperuricemia, gout, early-onset
gout, and tophaceous disease [70–81]. Much of the regulation of serum urate by ABCG2
occurs by effects on urate transport into the gut. Other extra-renal effects of urate trans-
porters (e.g., GLUT9, ABCC4) could also regulate urate metabolism and circulating urate
levels in the intestine and/or liver [82,83].

Heritability of serum urate level is estimated to be 30–60%, with major effects of single
nucleotide polymorphism (SNP)s in multiple urate transporter genes [7,84–86]. However,
such contributions, reflected in the effect size of certain genes, differ according to sex.
A prime example is SNPs in SLC2A9 (e.g., rs7442295, rs734553), which have greater effect
sizes in females, whereas ABCG2 SNPs rs2231142 and rs2199936 have greater effect sizes in
males [87,88].

Table 1. Effects of sex hormones on urate transporters.

Urate Transporter or Transport Modulator
(Function) [References]

Tissue
Expression

Estrogen
Effects

Progesterone
Effects

Testosterone
Effects

SLC22A12/URAT1 (reabsorption) [66,89] RA ↓ ↑
SLC2A9/GLUT9 (reabsorption) [62,66,67] RB, RA ↓ ↓

ABCG2 (secretion) [66,68,82]
RB, RA

I
H

↓
↑
↓

(-)

SLC22A6/OAT1 (excretion) [90] RB ↑ ↓
SLC22A7/OAT2 (secretion) [91] RB ↑ ↓

ABCC2/MRP2 [83] I, H ↑ (males)
(-) (female)

↓ (male)
(-) (female)

SMCT1, SMCT2 (modulators of URAT1 function) [66,89] RA (-) ↓ ↑
SGLT2 (modulator of SLC2A9 and URAT1 function) [92] RA ↑ ↑

Abbreviations: sodium monocarboxylate cotransporter (SMCT), renal basolateral (RB), renal apical (RA) intestinal
(I), hepatic (H), organic anion transporter (OAT).

2.3. Sex Hormones in Purine Metabolism

Purine metabolism in females with gout is similar to that in males with primary gout,
including decreased renal clearance and fractional excretion of urate, hypoxanthine, and
xanthine and increased mean plasma urate, hypoxanthine, and xanthine levels [93]. How-
ever, plasma xanthine oxidoreductase (XOR) activity, measured in patients with coronary
artery spasm, was reported to be significantly lower in females [94]. The difference could be
due to estradiol and other sex hormones. In this context, estradiol stereoisomers prevented
a hypoxia-induced increase in XOR enzymatic activity at a posttranscriptional level by
a receptor-independent mechanism in cultured microvascular endothelial cells [95]. In



Gout Urate Cryst. Depos. Dis. 2024, 2 4

addition, the genes of two major enzymes in purine metabolism—hypoxanthine-guanine
phosphoribosyltransferase (HPRT) and phosphoribosylpyrophosphate synthetase—are on
the X chromosome, and associated with X-linked inborn errors of purine metabolism (also
phosphoribosylpyrophosphate synthetase superactivity and HPRT deficiency including
Lesch-Nyhan disease) [96,97]. Generally, female heterozygote carriers do not develop symp-
toms unless their normal alleles are inactivated due to skewed X chromosome inactivation,
while males with pathogenic variants generally are affected.

XOR and urate transporter activity in the prostate is an obvious distinction between
the sexes. A positive correlation was discovered between XOR activity and prostate-
specific antigen levels in the serum in prostate cancer patients [98]. Human single cell
RNA sequencing data showed that XOR is expressed in prostatic basal and urothelial
cells, and urate concentration is robust in the murine prostate [99]. However, patients who
underwent prostatectomy alone for cancer showed a non-significant change in serum urate,
though there was a decrease in those patients with hyperuricemia [63]. Notably, following
castration for prostate cancer, serum urate falls in a transitory way [100], and androgen
deprivation therapy lowers serum urate in prostate cancer patients [63]. Hence, the role of
the prostate by itself in sex differences for serum urate requires further investigation.

3. Sex Differences in Risk Factors for Gout
3.1. Age, Race, Ethnicity Demographic Factors

Age is a well-established risk factor for gout [101–103]; female gout patients are older
than males on average, and the hazard ratio for incident gout with every one-year increase
is higher in females than males [104,105]. Black females have a higher risk for developing
gout than white females [53], suggesting the role of ethnicity as a risk factor. In accordance
with this, a nation-wide study showed that emergency department visits (relative ratio 5.91
[5.79–6.03] and hospitalization (relative ratio 4.80 [4.45–5.17] were strikingly higher in Black
than White females [106]. However, a recent study using NHANES 2007–2016 showed
that the effect of ethnicity diminished or became attenuated after adjusting for potential
confounders including low income and low education [15]. Therefore, associated diet,
social determinants, and clinical factors rather than ethnicity per se appear to contribute to
higher incident gout risk in Black females.

Notably, prevalence of hypertension in the USA in 2017–2020 was 57.5% in Black males
and was 58.4% in Black females compared to 48.9% in White males and 42.6% in White
females [107]. Moreover, the prevalence of gout in those of East and South Asian descent
residing in the USA has steeply increased and numerically exceeded all other ethnicities in
the 2017–2018 period [3]. However, gout prevalence in females was comparable among
ethnicities, whereas gout prevalence of Asian males was the highest of all studied ethnicities
and races after adjustment for social and clinical factors [3].

3.2. Diet, Obesity, Alcohol, Smoking

Risk factors for gout include obesity, alcohol consumption, high fructose consump-
tion [101], and foods such as meat and seafood [108]. Though alcohol consumption in
female gout patients is higher than in controls, the effects of alcohol on the risk of gout in
females are lower than in males [52]. In this context, a recent Japanese study found that
alcohol consumption is a risk factor for hyperuricemia or gout in males but not in females.
Furthermore, in the same study, smoking increased the risk for gout only in females [45].

Female gout patients have a higher frequency of obesity compared to male patients.
In one study, the risk of gout was reported to be higher in females with body mass indexes
(BMI) ≥27 kg/m2 (adjusted relative risk [RR] 1.30 in males and 2.15 in females) [104]. In
another study using linear Mendelian randomization (MR), one standard deviation higher
BMI increased the incidence rate for gout (incidence rate ratio [IRR] = 1.73, 95% confidence
interval [CI] [1.56–1.92]) in males and females. That said, BMI was found to be a stronger
risk factor for gout in females compared to males (p = 0.0043). Nonlinear effects of BMI
were identified for gout in both males and females, but nonlinearity for gout was more
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pronounced in males compared to females (p = 0.03) [109]. This reflects a stronger causal
effect of BMI on gout in leaner people.

Associations with gout of food, lifestyle factors, and genetic predisposition in genome-
wide association studies (GWAS) [7,47,79,85,86,110–118] have prompted the study of rel-
ative contributions to incident gout of non-modifiable genetic and modifiable risk fac-
tors [119]. Two previous studies, which included male subjects (50%, ~75%, respectively),
showed a relatively small contribution of dietary factors to serum urate levels [120,121]. In
a prospective cohort study limited to female subjects, subjects with less healthy diets (low
Dietary Approaches to Stop Hypertension [DASH] score) had higher risks of incident gout
than those with healthy diets, but this was much more prominent in those with increased
genetic predispositions (high genetic risk score [GRS]) [42]. Significantly, 51% of the excess
risk of incident gout was attributable to the additive gene–diet interaction in the cohorts
studied [73].

3.3. Comorbidities

Table 2 summarizes gout comorbidities as risk factors for gout development, com-
paring sex differences where available. Gout comorbidities that promote hyperuricemia
include hypertension, metabolic syndrome/insulin resistance, obesity, type 2 diabetes
mellitus (T2DM), CKD, and heart failure (HF) [122]. Observational studies suggest that the
incidence of gout is increased in hypertensive patients in both males and females [6,55].
However, MR studies have had conflicting results. An analysis of the Taiwan biobank found
that the liability of hypertension does not have a causal effect on gout [123]. On the other
hand, a genetic analysis of over one million European ancestors found that systolic blood
pressure and pulse pressure had a causal effect on serum urate and gout, but sex-specific
effects were not identified [124]. Observational studies showed that HF or hypertension is
more common in female gout patients [21]. This may be a result of the higher frequency of
urate-elevating diuretic use in female gout patients. In this regard, an MR study found no
consistent evidence for the causal effect of HF on serum urate levels [125].

Table 2. Sex differences of gout comorbidities as risk factors for gout development.

Comorbidities Prevalence in Gout Patients Causal Effect on Gout
(Observed in MR or Cohort Studies)

HTN [12,13] Higher in females Inconsistent

T2DM [13,14]. Higher in females Causal effect identified for insulin
resistance but not T2DM per se

Obesity [15,16] Higher in females Positive causal effect
Higher in females

CKD [17–20] Higher in females Positive causal effect
Higher in females

HF [21–23] Higher in females Causal effects not identified to date

OA [24] Not specifically reported
Causal effects suggested to be due to
changes in lubricin, hyaluronan, and

the cartilage extracellular matrix in OA
Abbreviations: Mendelian randomization (MR), hypertension (HTN), type 2 diabetes mellitus (T2DM), chronic
kidney disease (CKD), heart failure (HF), osteoarthritis (OA).

T2DM is more prevalent in female gout patients [52], and female gout patients are
at higher risk than males for developing T2DM [39]. However, T2DM itself was not a
causal factor of incident gout in two MR studies [124,126], though there is evidence by
MR for a causal role of insulin resistance in hyperuricemia and gout [127]. Metabolic
factors related with T2DM, such as hyperinsulinemia, obesity, and hypertriglyceridemia,
are strongly linked to hyperuricemia and gout [128,129]. Indeed, hyperinsulinemia was
reported to reduce renal fractional excretion of urate via uncharacterized mechanisms [130].
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A recent study found genetic interaction between SLC2A9 and its variants with human
insulin, insulin receptor, and insulin receptor substrate-1 loci, which was most evident
in females [131]. Notably, SLC2A9 genetic variants are more prominently associated
with female gout, and SLC2A9-encoded GLUT9 may be involved in hyperinsulinemia
associated with obesity and metabolic syndrome, which are more prevalent in female gout
and promote hyperuricemia and gout.

CKD is clearly associated with hyperuricemia and sharply elevates the risk of incident
gout [132]. CKD is more prevalent in females overall [133] and in female gout patients
compared to male patients. When the 3-year cumulative incidence of gout was addressed,
stratified by the level of eGFR, males showed a higher incidence of gout across all the levels
of eGFR than females [134]. However, this likely reflects the higher prevalence of gout in
males, rather than CKD contributing more to gout development in males. Indeed, with
adjustment for confounding factors, CKD was associated with gout with an HR of 1.88
(1.13 to 3.13) among males and 2.31 (1.25 to 4.24) in females [135], a result which should
not be interpreted as a greater prevalence of CKD in patients with gout. In females, owing
to the overlapping 95% CIs.

Osteoarthritis (OA) is associated with gout, and the pathogenic link appears to extend
beyond shared risk factors (e.g., age, obesity) to involve the effects of degenerative changes
in cartilage and altered boundary lubricants in joints with OA [136,137]. In this context, we
recently reported incident, erosive gouty arthritis without hyperuricemia in a young adult
female with attenuated serum lubricin levels [10]. A decrease in lubricin promotes synovitis,
and this study implicated TLR2 ligands in suppressing fibroblast-like synoviocyte lubricin
levels. Moreover, lubricin, at concentrations present in normal joint fluids, was found to
markedly suppress MSU crystal precipitation [10]. Lubricin also blunted the capacity of
IL-1 to induce xanthine oxidase and elevated urate in synovial resident macrophages [10].
Lubricin is reduced in OA joints, which suggests a link between the increased risk of
postmenopausal females for developing gout and OA. In addition, type II collagen, which
is released from OA articular cartilage, can increase MSU crystallization in vitro [138]
and enhance inflammatory responses to MSU crystals [9]. Prevalence of OA is higher in
aged females. In nodal hand OA, which is more common in females, gout is commonly
superimposed on distal interphalangeal joint OA [139]. Notably, OA patients with gout are
at higher risk of total knee replacement surgery [140]. However, an MR study found no
causal association between OA and gout [141]. Therefore, the link between OA and gout is
likely not mediated by genetic association. Instead, changes in the articular cartilage surface
and other changes in joint biology in OA (e.g., low grade synovitis, decreased synovial
lubricin production [10,137], decreased hyaluronan production that also can dampen gouty
inflammation [142], as well as increased type II collagen release from damaged cartilage)
likely predispose individuals to intra-articular MSU crystal deposition and could impact
intra-articular xanthine oxidase and urate production in the joint [143].

3.4. Genetic Studies

Genetic factors clearly influence serum urate level and gout [7]. Genome-wide as-
sociation studies (GWAS) have revealed genetic variants associated with hyperuricemia,
with effect sizes differing according to sex [7,70,88,115,144]. Two recent studies addressed
genetic risk for gout using polygenic risk score (PRS), with female gout patients included.
A gout PRS, calculated in large European and Polynesian cohorts, was associated with
earlier age at gout onset and tophaceous disease in males but not in females [110]. In
another study, a PRS for gout was determined in 59,472 Taiwanese and Chinese female
gout patients, stratified by age to take the influence of menopause into account. Six variants
located in SLC2A9, C5orf22, CNTNAP2, and GLRX5 were significant predictors of female
gout in subjects ≥ 50 yrs. For those under 50 yrs, only the variant rs147750368 (SPANXN1)
on chromosome X was found [47]. Results suggested that even females bearing gout risk
gene variant alleles do not commonly develop gout until they are older, and that the genetic
variants underlie a lower portion of incident gout in females compared to males.
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4. Differences in Age and Clinical Characteristics of Gout in Females

The different clinical characteristics of female compared to male gout include onset
of gout almost a decade later in females than males [6,55]. The onset age difference is
associated with menopause and loss of aforementioned sex hormone protective effects.
Female gout patients overall have more comorbidities associated with aging, such as
hypertension, T2DM, and CKD. The higher prevalence of hypertension is not only related
to more diuretic use but also impaired renal dysfunction, which is more prevalent in female
gout patients. Female gout patients also have higher BMI, though they consume less alcohol
than males [46,49,55,56]. the sites of clinically manifest gouty arthritis differ in females.
The typical presentation of arthritis in the first toe metatarsophalangeal joint (podagra) is
less frequent in females, who also tend to have oligoarticular presentation affecting other
sites, such as small hand joints and the ankle [55]. Furthermore, gout can be superimposed
on existing OA, which often leads to delayed diagnosis. Also, the degree of severity of
many comorbidities in females that overshadow gout can contribute to delayed diagnoses.
Mean serum urate level at diagnosis is higher in female gout patients (8.91 ± 2.19 mg/dL
in females vs. 8.24 ± 1.85 mg/dL in males) [49].

A study from the Netherlands reported characteristics of 161 female and 793 male gout
patients [49], specifically comparing patients ≥ 55 yrs to explore effects of sex hormones.
Most of the differences were attenuated in the ≥55 yrs group, and after menopause, the
gout phenotype was more similar to that of males.

Strikingly, females but not males with gout had an increased risk of COVID-19 infection
and higher COVID-19-related death [145]. The higher risk of death for females with gout
remained significant after adjusting for 16 other diseases, for BMI, and for age, though
it is possible that this adjustment did not fully account for underlying metabolic disease
diathesis in females with gout. Nevertheless, it remains possible that female gout itself,
rather than gout-associated comorbidities, could be an independent risk factor for COVID-
19, potentially via differences in immunity and inflammation in females.

5. Potential Sex Differences in Gouty Inflammation

Gouty inflammation is primarily driven by innate immunity [11], which serves as
the first line of defense against pathogen-associated molecular patterns (PAMPs) and
danger-associated molecular patterns (DAMPs). Potential factors affecting inflammatory
response that may contribute to clinical differences between female and male gout are
summarized in Table 3. Importantly, sex hormones can affect the immune system by
changing the tissue milieu that immune cells encounter [146]. Innate immunity also can
be influenced by intrinsic (host) and extrinsic (environmental) factors such as age and
certain comorbidities [147]. As cited above, females are substantially older than males
when diagnosed with gout and have distinctions in sites of arthritis, favoring degenerative
hand arthritis, and less frequent polyarticular gouty arthritis flares [55].

Sex hormones including estrogen, progesterone, and testosterone directly impact the
inflammatory capacity and functions of immune cells [146]. Comparison of female and
male transcriptomes in whole blood has revealed a sex-specific immune transcriptome, and
genes influenced by sex have been associated with responses to cytokines, type I interferon
signaling, and rheumatoid arthritis [148].

Postmenopausal females have less pronounced sex-specific differences in gene ex-
pression, suggesting a role for estrogen in maintaining sex dimorphism in the blood
transcriptome [148]. Estrogen receptors, ERα and ERβ, function as transcription factors
by binding to estrogen response elements in gene promoters and regulating transcription
in the presence of estrogen [146]. Low levels of estradiol increase the pro-inflammatory
capacity of macrophages and monocytes in both humans and mice. Sex-specific open
chromatin regions have been identified in murine macrophages, indicating a sex dimorphic
immune epigenome, and menopause is linked with epigenetic changes [146].
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Table 3. Potential factors affecting inflammatory response that could contribute to sex differences
in gout.

Potential Factor Effect on Immune Response

Transcription [25,26]
• Responses to cytokine, type I interferon signaling in immune cells.
• Gene expression regulated by transcription factors ERα and ERβ

Mitochondria [27,28]

• Female mitochondria have higher antioxidant capacity with lower
ROS production, which is related to less NLRP3 activation in gout.

• Estrogen increases PGC1α and NRF1/2, leading to upregulation
of TFAM, TFB1M/TFB2M, and SOD2, thereby alleviating
mitochondrial dysfunction.

• Decreased activation of AMPK signaling due to decreased
estrogen aggravates mitochondrial dysfunction that is related to
gouty inflammation.

Abbreviations: estrogen receptor (ER), reactive oxygen species (ROS), PPAR-γ coactivator-1α (PGC1α), nuclear
respiratory factor (NRF), mitochondrial transcription factor A (TFAM), mitochondrial transcription factor B1 and
B2 (TFB1M/TFB2M), manganese sodium dismutase (SOD2), AMP-activated protein kinase (AMPK).

The innate immune response can be influenced by mitochondria. Moreover, mitochon-
drial dysfunction, a central driver of aging, has been implicated in not only the pathogenesis
and pathophysiology of gout, but also cardiovascular, metabolic, and renal comorbidities
such as HTN, obesity, type 2 diabetes, and CKD [146,149–151]. Firstly, mitochondria are
involved in signal transduction of downstream of pattern recognition receptors (PRRs).
Intracellular signaling pathways of several PRRs physically interact with mitochondria
and act as modulators of their function [149]. For instance, Toll-like receptors trigger the
recruitment of mitochondria to macrophage phagosomes, where they release reactive oxy-
gen species (ROS). Secondly, when mitochondrial damage occurs (such as an increase in
mitochondrial membrane permeability), mitochondrial DNA (mtDNA) can be released
into the cytosol or extracellular space. This mtDNA can be recognized as a DAMP by PRRs,
leading to the initiation of a proinflammatory response. Third, mitochondrial signals, in-
cluding from oxidative stress, are linked to NLRP3 inflammasome activation [152]. Fourth,
mitochondrial sex dimorphisms are evident [149,150], supported by the distinct male and
female sex hormones in regulating mitochondrial energy, oxidative phosphorylation, and
Ca2+ homeostasis [149,150]. The effects of estrogen on mitochondrial function can vary
depending on the tissue and context. In most tissues, particularly heart, kidney, and skeletal
muscle, female mitochondria have been reported to have upregulated antioxidant capacity,
respiratory function, and mitochondrial biogenesis capacity, with lower ROS production
than male mitochondria [149,150].

In humans, estrogen treatment reverses the mitochondrial dysfunction associated
with menopause by increasing the expression of PPAR-γ coactivator-1α (PGC1α), a mas-
ter regulator of mitochondrial biogenesis and a coactivator of nuclear respiratory factor
(NRF)1/NRF2. This leads to the upregulation of expression of mtDNA-specific transcrip-
tion factors, including mitochondrial transcription factor A (TFAM) and mitochondrial
transcription factor B1 and B2 (TFB1M and TFB2M), as well as expression of the antioxidant
enzyme glutathione peroxidase and manganese sodium dismutase (SOD2) [149]. Estro-
gen plays a significant role in heart and kidney protection in premenopausal females by
modulating renal mitochondrial bioenergetics during acute kidney injury, hypertension,
and T2DM [149]. Decreased activation in certain female tissues of AMP-activated protein
kinase (AMPK1) and SIRT1, which are crucial regulators of mitochondrial biogenesis and
gouty inflammation [153], may be significant.

6. Treatment Responses in Females with Gout

Most gout clinical trials have been conducted with a vast majority (~9:1 or more) of
male patients, with only a few studies that address the efficacy of gout medications in



Gout Urate Cryst. Depos. Dis. 2024, 2 9

females [46]. However, post-hoc analyses suggest that ULT treatment response does not
differ between the sexes [54]. That said, gout is associated with a moderately higher risk of
fracture [40,154], and postmenopausal females have elevated risk of osteoporotic fracture.
A recent study indicated that ULT that achieves the serum urate target reduces the risk of
fracture in gout patients [155]. Therefore, postmenopausal gout patients with osteoporosis
might benefit from treat-to-target ULT. In a recent questionnaire-based study that addressed
illness perception of gout according to sex, females felt more disabled, and their pain scores
were higher in acute gout flares [156]. Furthermore, allopurinol hypersensitivity syndrome
incidence is higher in female gout patients, which may be partially related to a larger
CKD population [157,158]. Also, it should be noted there are limitations in choosing anti-
inflammatory drugs (e.g., non-steroidal anti-inflammatory drugs) for acute flares in the
CKD population [46]. Collectively, pharmacologic treatment should take into account
the special considerations for female gout along with the different non-pharmacologic
approaches (e.g., impact of lifestyle modifications).

7. Special Consideration in Treatment of Female Gout: Pregnancy, Breastfeeding

Normal pregnancy increases serum urate levels. Although a relatively small number
of female gout patients are at their reproductive ages, pregnancy or breastfeeding limits
the treatment options for these patients [159,160]. For acute flares, clinicians generally
use corticosteroids, colchicine, and/or NSAIDs. However, in pregnancy, NSAID use
is not recommended in the third trimester, as it can result in premature closure of the
ductus arteriosus of the fetus. Certain corticosteroids (e.g., dexamethasone) can cross the
placenta and also are not recommended. Colchicine is generally not recommended due
to unknown effects on the fetus; that said, safe use of colchicine during pregnancy in
patients with familial Mediterranean fever has been reported [161]. Regarding the use of
ULT, xanthine oxidase inhibitors including allopurinol and febuxostat cannot be employed
during pregnancy due to potential teratogenicity [160]. Pegloticase safety data do not exist
for pregnancy in humans. Taken together, there are no unequivocally safe drugs to decrease
the serum urate level during pregnancy.

For breastfeeding during gout acute flares, NSAIDs and corticosteroids can be used.
With regard to ULT, allopurinol can be used while breastfeeding, but it is secreted into
breastmilk, and the infant should be closely monitored for possible adverse reactions such
as hypersensitivity or cytopenia [162]. There are no reported data on using febuxostat in
breastfeeding females.

8. Conclusions

Gout is common in females, though it remains concentrated among postmenopausal
females. A primary driver for the rise of gout prevalence in females after menopause
is the loss of female sex hormone effects on serum urate levels. However, it remains
unclear what effects other than decreased estrogen-mediated uricosuria are contributory,
with one possibility being altered gut urate transport. Understanding the mechanisms
of observed sex differences in the progression and susceptibility to gout in males and
females may help tailor more effective treatment. Multiple factors, exemplified by genetics,
sex hormones, comorbidities, lifestyle, and distinct inflammation responses appear to
contribute to differences in gout according to sex. For example, polymorphism in the gut
and renal urate excretory transporter ABCG2 is more strongly associated with serum urate
in males than females, whereas SLC2A9 polymorphisms are more strongly associated with
serum urate in females than males. Obesity is more frequently linked with gout in females
and compounds genetic susceptibility factors. Alcohol consumption is less related to risk
of gout in females.

Though males and postmenopausal females tend to have similar profiles of primary
gout, comorbidity studies have mostly been small, and conclusions for sex differences in
gout have been inconsistent. OA is a risk factor for gout, and articular cartilage surface
and other changes in articular biology in OA (e.g., low grade synovitis, decreased lubricin,
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type II collagen release from damaged cartilage) could predispose these individuals to
MSU crystal deposition. In this light, OA is more common in older females than males.
Certain comorbidities that cause hyperuricemia (e.g., hypertension, CKD) are also more
prevalent in female gout, but only so in younger patients. Hence, younger patients who
have lower serum urate levels due to the protective effects of estrogen commonly develop
gout when they develop urate-elevating comorbidities, and many such comorbidities are
more common in female gout patients. Though post hoc analyses show no difference in
the treatment response between females and males with gouty arthritis, females appear to
report more pain and disability during gout flares. Lastly, the higher frequency of CKD and
of severe cutaneous hypersensitivity reaction to allopurinol could narrow urate-lowering
therapy options in females.
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anion transporter OAT2 in rats and mice is regulated by sex hormones. Am. J. Physiol. Physiol. 2007, 292, F361–F372. [CrossRef]
[PubMed]

92. Vrhovac, I.; Eror, D.B.; Gerasimova, M.; Rose, M.; Breljak, D.; Ljubojević, M.; Brzica, H.; Sebastiani, A.; Thal, S.C.; Sauvant, C.; et al.
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