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The Life and Death of Jamoytius kerwoodi White; A Silurian
Jawless Nektonic Herbivore?
Michael E. Brookfield
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Abstract: Jamoytius kerwoodi, is a primitive, eel-like jawless vertebrate found uniquely in an Early
Silurian (Llandovery epoch; 444–433 Ma) horizon near Lesmahagow, Scotland. This species is
a rare component of a low-diversity dominantly nektonic detritus-feeding and herbivorous fauna
living over an anoxic bottom and is found at the transition from a marine-influenced, probably
brackish-water, deep-water basin to a shallower-water, less saline and likely freshwater basin. In
the absence of true teeth, Jamoytius was probably a detritivore or herbivore feeding on Dictyocaris.
Jamoytius may have a common ancestor with living lampreys, especially as their ectoparasitic mode
of life might have evolved from ancestral detritivores or herbivores.
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1. Introduction

Jamoytius kerwoodi White was a primitive, eel-like jawless fish that lived in the Llandovery
epoch (444–433 Ma) of the Early Silurian period [1] (Figure 1). The fossil is preserved as
rare carbonized films on bedding planes in one laminated siltstone horizon in the bank of
the Logan water in the Lesmahagow inlier of Lanarkshire, SW Scotland [2]. It was once
considered the most primitive known vertebrate [1], but with additional studies, its affinities
are now debatable [3–8]. Because the interpretations of such exceptionally preserved
soft-bodied fossils is difficult, observed features can be interpreted in different ways [9–11]
(Figure 2). Various cladistic analyses of Jamoytius with other jawless vertebrates, using
different character codings, give divergent results [7,12–20]. Choice of the in-group taxa
affects its placement [17,21,22]. The position of Jamoytius on cladograms has consequently
not stabilized, though it often appears as a sister taxon to euphaneropids, and/or lampreys,
and/or anaspids [5,15,17,23–25] (Figure 3).
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Figure 1. Jamoytius reconstructions: (A) with ventral “lamprey” mouth (with permission from 
Nobu Tamura); (B) with terminal suspension/detritus feeding mouth ([2], plate 11). 

 
Figure 2. Jamoytius fossil and inferred features: (A) with the conflicting interpretations of White [1], 
in bold, and Ritchie [2,18,25,30] in plain italics (modified from Sansom et al. [31] (Plate 1); (B) body 
parts and topological interpretation of the holotype (NHM P11284a), from [31] (text Figure 5). 
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Figure 3. Examples of cladistic analyses showing three interpretations for Jamoytius. (A): Shu et al. 
(1999) [19], (B): Donoghue et al. (2001) [21], where Ostraco/Jawed represents other ostracoderms and 
jawed vertebrates, (C): Sansom et al. (2010) [31]. 

 
Figure 4. Living and oldest fossil (Devonian) lampreys. (A) Parasitic sea lamprey (Petromyzon mari-
nus Linnaeus), 35–60 cm long; (B) American brook lamprey (Lethenteron appendix DeKay) 15–25 cm 
long (A,B) courtesy of North Carolina Wildlife Resources Commission; (C) Devonian parasitic fossil 
lamprey (Priscomyzon riniensis Gess et al. [22], ~5 cm long (public domain). 

The fossil evidence for early evolution of lampreys is limited. Based on both morpho-
logical and molecular evidence, Brownstein and Near [32] estimated that 90% of living 
lamprey clades originated only since the late Cretaceous. As reconstructed by Reeves and 
Sansom [11], carnivorous lampreys evolved from non-carnivorous early Paleozoic forms 
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(1999) [19], (B): Donoghue et al. (2001) [21], where Ostraco/Jawed represents other ostracoderms and
jawed vertebrates, (C): Sansom et al. (2010) [31].
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As a sister taxon to the lampreys, Jamoytius has been compared with parasitic lampreys
which attack fish. But, only 18 of the 38 known species of lamprey, are carnivorous [26].
Living nonparasitic lampreys appear to be derived from parasitic species with heterochronic
shifts in metamorphosis [27]. Adult non-parasitic lampreys tend to be somewhat smaller
(10 to 20 cm long) than adult parasitic lampreys (15 to 120 cm long) (Figure 4), whose
size is related to life history trade offs; either become a parasite/predator with high
growth potential, fecundity and mortality, or remain a detritivore with lower growth
rates, fecundities and mortality [26,28], Size is, however, not diagnostic and cannot be used
to distinguish parasitic from non-parasitic forms [29], and the supposed parasitic Paleozoic
forms may not have been such, but grazers or scavengers (see below).
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Figure 4. Living and oldest fossil (Devonian) lampreys. (A) Parasitic sea lamprey (Petromyzon marinus
Linnaeus), 35–60 cm long; (B) American brook lamprey (Lethenteron appendix DeKay) 15–25 cm
long (A,B) courtesy of North Carolina Wildlife Resources Commission; (C) Devonian parasitic fossil
lamprey (Priscomyzon riniensis Gess et al. [22], ~5 cm long (public domain).

The fossil evidence for early evolution of lampreys is limited. Based on both morphological
and molecular evidence, Brownstein and Near [32] estimated that 90% of living lamprey
clades originated only since the late Cretaceous. As reconstructed by Reeves and Sansom [11],
carnivorous lampreys evolved from non-carnivorous early Paleozoic forms in the Jurassic,
when innovations of their feeding apparatus may underlie their evolutionary increase of
the body size and the ‘modernization’ of their life-history during the Jurassic period [33],
and then radiated from the late Cretaceous times (~100 Ma) and especially from Miocene
times (~25 Ma) onwards into many both carnivorous and non-carnivorous forms.

Only four undoubted Palaeozoic lamprey species have been recorded, the Devonian
(419–359 Ma) Priscomyzon riniensis, from South Africa considered the oldest parasitic
lamprey [22]. Priscomyzon, and three from the Carboniferous (359–299 Ma) [8]. These
Paleozoic lampreys might not, however, be parasitic as conventionally assumed,
as they have tiny dentition and a small buccal cavity (which accommodates the
anti-coagulant secreting glands and food processing in living parasitic lampreys) and
lack an ammocoete stage [8,34]. Wu et al. [33] speculated that the well-developed oral
discs and attaching skills of these early lampreys might be adaptations to grazing algal
mats, which would fit with the mode of life proposed here for Jamoytius and other
similar forms like Euthanerops.

As a sister taxon to the anaspids (Figure 3B), Jamoytius resembles the genera, Loganellia,
Birkenia, and, especially, Lasanius [35] (Figure 5). Loganellia also occurs in the Jamoytius
bed, while Birkenia and Lasanius occur in slightly younger fish beds in the Lesmahagow
succession [36,37].
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Figure 5. Agnathan reconstructions: (A) Thelodont Loganellia scotica (https://creativecommons.org/
licenses/by-sa/4.0/, permission Norbu Tamura); (B) Anaspid Birkenia (creative common, Highlander
Fossils; (C) Anaspid? Lasanius (creative commons, permission Rob Van Assen).

Jamoytius is often classified as a sister taxon to the Upper Devonian fish, Euphanerops,
originally grouped together in the Jamoytiforms [38] (Figure 3C), though many of the
structures in the available fossils remain unexplained [24]. Several other euphaneropids
have now been recognized: one, Ciderius cooperi van der Brugghen from the fish beds above
the Jamoytius bed at Lesmahagow [39]. These are similar to Jamoytius, both in anatomy and
possibly mode of life (Figure 6).
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euphaneropids; Ciderius couperi, (Lower Silurian), Achanarella trewinii, Cornovichthys blaaeweni (Middle
Devonian), Endiolepis aneri (Upper Devonian) (with permission from Nobu Tamura).

The mode of life of Jamoytius kerwoodi is thus unresolved; even its life orientation
is still not certain [31]. In this paper I am not particularly concerned with its affinities,
but with its mode of life as inferred from its anatomy (which bears, of course, on its
affinities), adaptative morphology and palaeoenvironment based on the sedimentology of
the enclosing strata and the lifestyles of it and its associated biota.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.miguasha.ca/mig-en/euphanerops.php
https://www.miguasha.ca/mig-en/euphanerops.php


Foss. Stud. 2024, 2 81

2. Anatomy

Because the preservation of soft-bodied organism like Jamoytius is so variable, and
because there are often so few fossils of them preserved, then even their basic anatomy
is subject to different interpretations, leading to radically different reconstructions and
affinities [11].

Jamoytius had an elongated body, ranging from 14–18 cm long by 3–4 cm wide,
a cartilaginous skeleton, akin to the branchial basket of lampreys, and weakly mineralized
scales [31]. Earlier reconstructions show side-fins running the length of its body, but these
are now interpreted as artifacts formed as a corpse was squashed post-burial. A ring-like
stain, interpreted as cartilage, encircles the very small ‘mouth’ (seen as 0.5 to 0.7 mm in
diameter in Figure 2), which suggested to Ritchie [2,18,25] that it was an ancestral parasitic
lamprey. Jamoytius, however, apparently had no true teeth or teeth-like structures, in
its ‘mouth’ [31], If Jamoytius had rasping keratin teeth like living parasitic lampreys, as
Stensiö [40] inferred for Norwegian anapsids, then these should probably be preserved
carbonized, as is much of the rest of the animal (Figure 2). The third most abundant
vertebrate fossils (after bones and teeth) are keratin-derived materials such as skin and
feathers [41,42].

The controversy about whether this ‘mouth’ was anterior terminal, or subterminal
ventral, seems to be resolved in favour of the latter [31]. Towards the anterior end, many
specimens preserve a pair of linear features composed of serially repeated, contiguous,
sub-rectangular shapes, interpreted as branchial openings [31]. The anterior of Jamoytius
has room for a piston-like tongue comparable with living parasitic lampreys [34]. In living
parasitic lampreys, this holds the biting and cutting plates used to parasitize fish, which
are not present in Jamoytius. On the other hand, such plates would not be required to eat
soft vegetation, which is a possibility considering the holes in associated Dictyoocaris (see
Section 5), and Jamoytius does not have the lamprey lips used for suction [43].

Most specimens do not preserve the posterior portion of Jamoytius, and where they do,
it is too faint to be seen clearly [31]. So, the inferred hypocercal tail is reconstructed only by
analogy with other near-contemporary anaspids, like Birkenia and Lasanius [17,44].

3. Mode of Life of Jamoytius

Jamoytius has been compared with parasitic lampreys which attack fish [2] (Figures 2A
and 3). But, only 18 of the 38 known species of lamprey, are carnivorous. The ancestral
crown lamprey was probably a freshwater nonparasitic species, some of which evolved
into parasites [32]. Living non-parasitic lampreys are smaller (less than 40 cm long) than
parasitic sea lampreys (35–120 cm long), and all inhabit freshwater [26]. The non-carnivorous
lampreys do not eat at all, since they have a nonfunctional intestine, only live for four to six
months on the energy stored when young; as a result, they typically have small mouths and
poorly-developed teeth, useless for attaching to a host, and die after spawning [45]. For
example, Lethenteron appendix, the American brook lamprey, has small larvae (1–2 cm long)
that feed on algae and detritus for between three and seven years, before metamorphosing
into sexually mature adults (15–25 cm long) [46]. The size and anatomy of Jamoytius is more
compatible with non-carnivorous living lampreys, though the Devonian inferred parasitic
lamprey, Priscomyzon riniensis, is also very small [22] (Figure 4C).

The comparable agnathans, have terminal anterior mouths which do not appear to be
protrusible (Figure 5). Such mouths are often found among omnivorous mid-water feeders,
which eating anything available, by grabbing bits of food as they move [47].

4. Paleoenvironments

The Jamoytius-bearing horizon is one of several eurypterid- and fish-bearing units in
the Silurian (Llandoverian; 444–433 Ma) Priesthill Group of the Lesmahagow inlier in the
Midland Valley of Scotland [18,30,48]. It is exposed at Birk Knowes in a cliff next to the
Logan Water (NS737346) (Figure 7A) near the top of the Patrick Burn Formation, an over
500-m-thick section of alternating grey sandstones, siltstones, and mudstones [37,49]
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(Figure 7B). The sediments of the Patrick Burn Formation change gradually upwards
from deeper water interbedded mudstone/turbidite sandstone facies into shallower water
interbedded mudstone/cross-bedded and laminated sandstone facies [37,49]. This is
accompanied by changes in the taxonomy and ecology of the fossil biotas from marine to
freshwater [30,37,49] (Figure 7B).
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Throughout the Patrick Burn Formation, and in the Jamoytius bed itself, there is
a complete absence of burrowing organisms and there are no tracks or trails on the bedding
plane surfaces [37] The undisturbed nature of the sediments, together with abundant pyrite
and organic matter, indicates anaerobic bottom conditions in very quiet water subject to
periodic underflows [30]; in keeping with the abundance of Ceratiocaris. Geochemical
evidence indicates a gradual salinity drop through the upper part of the Priesthill Group,
which contains all the fish beds [49].

The Jamoytius bed itself is about 10 m thick and consists of alternating fine-grained thin
sandstones, deposited by turbidity currents, and varved siltstones in which the varves consist
of a lower graded siltstone overlain by an organic-rich muddy layer: the latter enclose most of
the fossils [30,49] (Figure 8A,B). The bounding sandstones are low-angle tabular cross-bedded
fine-grained mature muddy quartz- and felspathic-sandstones [49], deposited by sand waves
in shallow water by storms [37,50] (Figure 8C,D). The deeper water Jamoytius bed with its
turbidite sandstones and laminated siltstone contrasts markedly with the enclosing shallow
water cross-bedded fine sandstones and testify to great fluctuations in water levels and
climate at millennial scales typical of marginal marine and semi-arid lake basins such as
those of Lake Cariaco in northern Venezuela and Lake Chad in the central Sahara [51,52].
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Figure 8. Sediments; (A) view of part of Jamoytius bed showing varved siltstones alternating with
graded fine-grained sandstones; (B) photomicrograph of Jamoytius bed varved siltstone showing
lower graded silt layer overlain by organic-rich silt cap, then coarser basal silt layer of overlying varve;
(C) view of outcrop of fine-grained quartz-sandstones overlying Jamoytius bed; (D) photomicrograph
of fine-grained sandstone from (C), dominated by subangular quartz grains with rare plagioclase
felspar, in carbonate cement.

Both the Jamoytius bed, and higher fish-bearing beds at Lesmahagow, have alternations
of fine silt-clay couplets (varves) which contain the biota, and olive-grey massive mudstones
which are barren [53]. In the Jamoytius horizon, itself, the alternations of laminated
siltstones and graded quartz sandstones are almost identical to those of Cariaco basin
in Venezuela [54,55]. Water circulation inside this partially isolated basin is restricted,
which, combined with high annual primary productivity, causes it to be permanently
anoxic at depth, where alternating light and dark coloured varved sediments correspond
respectively to the winter-spring dry season and the summer-fall rainy season [56].
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The tectonic situation of the Midland basin Silurian inliers is also comparable with
that of the Cariaco and related basins along the northern Venezuelan coast. Both are
complex basins between ocean and continent, which evolved through time from marine
to freshwater continental conditions due to shortening and inversion caused by major
strike-slip faulting, occupying about he same ~100 Ma time period, Cretaceous to Recent
for Venezuela, and Silurian through Devonian for the Midland Valley [57,58].

5. Palaeoecology

Though the lower Partick Burn Formation has transported marine, or brackish water,
fossils in turbidite sandstone, which shows source connections with the sea, the lack of
normal marine planktonic organisms above these basal beds is clear evidence that the
oceanic connection was tenuous at best [37].

The Jamoytius bed lies above the Podowrinella (sands) and orthocone-Ceratiocaris
(clays) biofacies, between shallow water unfossiliferous sandstones [37] (Figure 6). The
Podowrinella biofacies is in turbidite sandstones and has been transported from shallower
water. It has benthonic scavengers (4 trilobite species, 1 ostracod), attached filter feeders
(3 brachiopods, 1 bivalve, crinoid ossicles, bryozoa), herbivores (1 gastropod), free living
filter feeders (Tentaculites, Cornulitids). This fauna suggests living conditions in shallow
turbulent marine, possibly slightly brackish, water [37]. The orthocone-Ceratiocaris biofacies
is in the clays and has only the podshrimp, Ceratiocaris papilio, rare orthocones and the
occasional patch of thelodont scales. The orthocones are upright in the sediment and have
floated in and settled with decomposition gas in chambers holding them upright as they
settled though the water. The Ceratiocaris and thelodonts, in the absence of marine fossils in
situ, indicate brackish to freshwater environments [37].

For the fossil biota of the Jamoytius bed, I use the list of Lovelock [37], which list
only those fossils from the actual laminated siltstones. Peach and Horne [59] believed the
Birk Knowes outcrop to be equivalent to those at Shank Castle, which was later shown
to be incorrect [49]. Unfortunately, this mis-correlation has led to confusion over the
attribution of some fossils to the Jamoytius bed [37] (pp. 166–167), an error repeated through
successive editions of ‘The Geology of Scotland’ [60]. The single example of the blind
“horseshoe crab”, Cyamocephalus loganensis Currie 1927, is a museum specimen, attributed
to the Jamoytius bed only on similar lithology [61]. Hunter [62] never recorded from where
he got his single specimen of the scorpion Palaeophonus caledonicus, though this might be
a plant (Ritchie, 1963), and it was dubiously assigned to the Jamoytius horizon by Peach
and Horne [59] (p. 574).

The actual fossil biota of the Jamoytius bearing laminated siltstone is dominated by
the crustacean Ceratiocaris papilio, accompanied by the thelodont, Loganellia scotica, the
enigmatic thylacocephalan crustacean? Aniktozoon loganense [63], Dictyocaris slimoni, most
likely a plant thallus [30], and disc- and stem-shaped plants. Other members are rare to
very rare. Rare members are the eurypterids Slimonia acuminata, Jamoytius kerwoodi itself
and the molluscs. Very rare members are the eurypterids, Erretopterus bilobus, Hughmilleria
sp., the ostracod, Beyrichia sp. (one specimen), and the problematica, Taitia catena and
Striatuncus scoticus [30] (Table 1).

The phyllocarid, Ceratiocaris, or pod shrimp, is up to 30 cm long, and is the most abundant
fossil. Living phyllocarids (leptostracans) are little know, but seem to prefer low energy
conditions over mud bottoms, and are tolerant of low oxygen concentrations [64,65]. Although
usually considered filter feeders, they can like shrimps, be opportunistic scavengers, eating
plants, organic detritus, and any living or dead organism that does not eat them first [66–68].

Loganellia scoticus is up to 30 cm long, and was originally reconstructed as a bottom
detritus feeder with heterocercal tail [69]: but it more likely lived as a nektonic feeder with
hypocercal tail, as supposed for the anaspid Birkenia, especially considering the anoxic
bottom over which it lived [30,70,71]. Indirect evidence comes from fossil scroll coprolites
assigned to the anaspids Birkenia and Loganellia, which occur in post-Llandoverian varved
siltstones in Northern Ireland, and are ascribed to detritus feeders [72].
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Table 1. Taxa, ecology, and abundance of Jamoytius association biota.

Taxa Feeding Strategy Frequency

Arthropods

Ceratiocaris papilio nektonic omnivore very common

Slimonia acuminata nektonic scavenger rare

Erretopterus bilobus nektonic carnivore very rare

Ainiktozoon loganense unknown common

Beyrichias sp. (1 specimen) detritivore very rare

Chordata

Loganellia scotica nektonic detritus/herbivore? common

Jamoytius kerwoodi nektonic detritus/herbivore? rare

Loganellia grossi nektonic detritus/herbivore? very rare

Cephalopoda

?Orthocone indeterminate nektonic carnivore very rare

Small (2 specimens)

Gastropoda

Platyschisma helicites mobile herbivore, grazer rare

(7 specimens)

Bivalvia

Pteritonella sp. bysally attached suspension feeder rare

Unknown

Dictyocaris slimoni plant primary producer? very common

Plant

Tatia catena primary producer very rare

Ainiktozoon, is about 12 cm long, and though originally described as an early chordate [73],
is now more plausibly an arthropod, more precisely a thylacocephalan crustacean [63]. Its
mode of life is unknown, though its abundance suggests an herbivore or detritus feeder
rather than a carnivore as postulated for other thylacocephalans [74].

Other arthropods, which are sometimes attributed to the Jamoytius bed, come from the
overlying Kip Burn Formation, now mostly covered by the waters of the Logan reservoir,
including the millipede Archidesmus loganensis Peach, 1899 [59].

Dictyocaris slimoni, forms large carbonaceous sheets up to 30 cm in diameter, commonly
pierced by variably sized circular holes up to 5 mm across, with raised rims [75,76] (Figure 9).
Dictyocaris specimens were originally thought to be fragments of large arthropod carapaces,
with the holes as parasitic injuries from Jamoytius mouths [30]. Dictyocaris is, however,
never found even partially articulated, despite its association with articulated Ceratiocaris
specimens which have no similar holes. And the large number of holes on the illustrated
specimen also seems too many to be the results of parasitism, considering the size of
Jamoytius (14–18 cm). Dictyocaris thus is likely a plant [30].



Foss. Stud. 2024, 2 86

Foss. Stud. 2024, 2, FOR PEER REVIEW 10 
 

 

The phyllocarid, Ceratiocaris, or pod shrimp, is up to 30 cm long, and is the most 
abundant fossil. Living phyllocarids (leptostracans) are little know, but seem to prefer low 
energy conditions over mud bottoms, and are tolerant of low oxygen concentrations 
[64,65]. Although usually considered filter feeders, they can like shrimps, be opportunistic 
scavengers, eating plants, organic detritus, and any living or dead organism that does not 
eat them first [66–68].  

Loganellia scoticus is up to 30 cm long, and was originally reconstructed as a bottom 
detritus feeder with heterocercal tail [69]: but it more likely lived as a nektonic feeder with 
hypocercal tail, as supposed for the anaspid Birkenia, especially considering the anoxic 
bottom over which it lived [30,70,71]. Indirect evidence comes from fossil scroll coprolites 
assigned to the anaspids Birkenia and Loganellia, which occur in post-Llandoverian varved 
siltstones in Northern Ireland, and are ascribed to detritus feeders [72]. 

Ainiktozoon, is about 12 cm long, and though originally described as an early chordate 
[73], is now more plausibly an arthropod, more precisely a thylacocephalan crustacean 
[63]. Its mode of life is unknown, though its abundance suggests an herbivore or detritus 
feeder rather than a carnivore as postulated for other thylacocephalans [74]. 

Other arthropods, which are sometimes attributed to the Jamoytius bed, come from 
the overlying Kip Burn Formation, now mostly covered by the waters of the Logan reser-
voir, including the millipede Archidesmus loganensis Peach, 1899 [59].  

Dictyocaris slimoni, forms large carbonaceous sheets up to 30 cm in diameter, com-
monly pierced by variably sized circular holes up to 5 mm across, with raised rims [75,76] 
(Figure 9). Dictyocaris specimens were originally thought to be fragments of large arthro-
pod carapaces, with the holes as parasitic injuries from Jamoytius mouths [30]. Dictyocaris 
is, however, never found even partially articulated, despite its association with articulated 
Ceratiocaris specimens which have no similar holes.  And the large number of holes on 
the illustrated specimen also seems too many to be the results of parasitism, considering 
the size of Jamoytius (14–18cm). Dictyocaris thus is likely a plant [30]. 

 
Figure 9. Dictyocaris: (A) thallus with holes; (B) drawing showing holes of varying sizes and raised 
rims (both from van der Brugghen, 1995 [76]). 

The morphologies of the rare eurypterids in the Jamoytius bed are more easily inter-
preted as those of nektonic scavengers, because they have none of the specialized adapta-
tions for catching prey found in eurypterids in higher fish beds at Lesmahagow, such as 
the large spiny grasping arms of the mixopterid Lanarkopterus dolichoschelus [77,78] (Figure 
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Figure 9. Dictyocaris: (A) thallus with holes; (B) drawing showing holes of varying sizes and raised
rims (both from van der Brugghen, 1995 [76]).

The morphologies of the rare eurypterids in the Jamoytius bed are more easily interpreted
as those of nektonic scavengers, because they have none of the specialized adaptations for
catching prey found in eurypterids in higher fish beds at Lesmahagow, such as the large
spiny grasping arms of the mixopterid Lanarkopterus dolichoschelus [77,78] (Figure 10A). For
example, Erettopterus with its small pincers and compound eyes was probably a predator/
scavenger with high visual acuity, but it was not as highly specialized or active as other
eurypterids [79]. Similarly, Ainiktozoon had likely neither the speed, nor the appendages, to
catch a fast-moving Loganellia (Figure 10B).
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Of the rare molluscs and the small orthocone cephalopod recorded by Ritchie [30] in
the Jamoytius horizon, the bivalve Pterinea is a byssally attached suspension feeder. Small
clusters of Pterinea occur with carbonaceous patches, which may be floating plants to
which they attached [30] (p. 149); such Pteriniids often attach to floating vegetation [80],
The low-spired gastropod Platyschisma is most likely a grazing or scavenging form [81].
The small orthocones are not part of the Jamoytius bed biota, and were transported in
from another shallower water environment, as they occur in the turbidite sandstones
interbedded with the laminated siltstones that have the vertebrates and the eurypterids
(personal observations in 2022).

6. Discussion

The Jamoytius association is dominated by supposed omnivores and herbivore/detritus
feeders, with primary production represented by phytoplankton and land plant spores
and? algal thalluses (? Dictyocaris) that contribute the dark laminae within the siltstone
beds (Figure 8B). There is no evidence for large scale transportation of the fossils after
death: they simply settled into the anoxic bottom.
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The Jamoytius reconstructions with a terminal mouth suggest a filter-feeder or a detritus-
feeder, analogous to larval lampreys [82] (Figure 1C,E) and possibly to the Loganelliform
thelodonts with which it is associated [83,84]: the latter are interpreted as pelagic slow
swimmers in open water [85]. Larval lampreys can feed on highly concentrated food
suspensions so thick that they border on organic deposits [86,87]. Jamoytius, however, lacks
any obvious adaptations to suspension feeding [88], and the more likely anterior ventral
position of the mouth indicates particulate feeding or grazing [47]. The mouth-sized holes
in the possible plant Dictyocaris suggest its soft tissues (there are no signs of cuticles) was
grazed by Jamoytius without teeth, which may have been later evolved in younger forms
like the Devonian Priscomyzon.

A bottom detritus feeding life style proposed by Parrington (1958) [89] is unlikely
given the anoxic bottom inferred from sedimentology, and the hypocercal tail which would
give lift to a fish whose morphology also suggests an active lifestyle, like the related
euphaneropids [90]. Like euphaneropids, Jamoytius resembles elongate arrow-like bony
fish, like pike (Esox spp.) and barracuda (Sphyraena spp.), with posterior dorsal and
anal fins, which assist the tail in bursts of rapid acceleration, but are inefficient at steady
swimming [91]. Ritchie (1968) considered that its highly developed metamerism (a linear
series of body segments fundamentally similar in structure) and large eyes of Jamoytius
indicated a very active, fast-swimming vertebrate.

Sedimentological and palaeoecological characteristics of the Jamoytius-associated
organisms indicate that Jamoytius lived in a brackish water environment in which the
bottom waters and sediments were anoxic, and inhospitable to benthos and a predominantly
planktonic and nektonic biota lived only in the overlying oxic waters (Figure 11). A benthonic
mode of life for any of the Jamoytius association organisms is unlikely. Jamoytius and its
likely euphaneropid sister taxa, despite the latter’s autapomorphic, elongated branchial
basket, could plausibly be stem lampreys [5], especially considering that the earliest
lampreys are interpreted as non-parasitic [32]. Lampreys may initially have evolved
as herbivorous organisms and only later developed ectoparasitic modes of life [34,86,92].
The tiny preserved dentition in Devonian Priscomyzon riniensis might be an evolutionary
advance for algal grazing from inefficient toothless Jamoytius.
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7. Conclusions

Jamoytius is associated with a low-diversity dominantly nektonic detritus and herbivorous
fauna living over an anoxic bottom, at the transition from a marine-influenced, probably
brackish-water and deep-water basin to a shallower-water, less saline and likely freshwater
basin. Jamoytius was likely a free-living surface feeding detritivore/herbivore.
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