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Abstract: As the robust maximum likelihood χ2 goodness-of-fit test had been found to yield inflated
type-I error rates for certain two-level confirmatory factor analysis (CFA) models, a new correction
for the test was implemented in Mplus version 8.7. In this simulation study, we inspected whether
the corrected test statistics follow the expected χ2 distributions when applying more complex two-
level models for multitrait-multimethod data with varying sample sizes and correlations within
trait factors. Investigating rejection rates and probability-probability plots, we found that the new
correction markedly and sufficiently reduced previously inflated rejection rates in conditions with
within-trait correlations equal to 1, 100 between-level units, and 10 or 20 within-level units. In other
conditions, rejection rates were hardly affected or not sufficiently reduced by the new correction.
While in most conditions, 2 within-level units did not suffice, 5 within-level units and 250 between-
level units were enough to yield correct rejection rates given within-trait correlations did not exceed
0.80. Correlations above 0.80 required larger sample sizes. In planning studies with multilevel CFA
models, researchers should be aware that sample size requirements for likelihood-based model fit
evaluations can depend on several different factors and might consider conducting Monte Carlo
simulations tailored to their specific modeling conditions.

Keywords: Mplus; robust chi-square; multilevel modeling; multitrait-multimethod analysis; Monte
Carlo simulation

1. Introduction

Having been cited more than 5500 times, the article originally introducing multitrait-
multimethod (MTMM) analysis by Campbell and Fiske [1] ranks among the most influential
articles ever published in psychology [2]. MTMM analysis supposedly constitutes the most
widely used method for quantifying (discriminant and convergent) construct validity [2].
Convergent validity describes the extent to which data gathered with different methods,
which are thought to capture the same trait, correlate with each other, while discriminant
validity describes the extent to which the measures of different traits diverge [1]. Whenever
a study includes more than one trait, e.g., neuroticism, agreeableness, and intelligence, as
well as more than one method, e.g., an interview, a work sample, and a recommendation
letter, it can be referred to as a multitrait-multimethod (MTMM) study [2]. Since their
introduction, approaches for analyzing MTMM data have advanced to various more
sophisticated confirmatory factor models (CFA-MTMM models), which allow for the
separate inspection of trait, method, and additional error factors and thus for a more
thorough analysis of construct validity [2–4]. In the following, we will illustrate MTMM
models referring to raters as an example of multiple methods [5]. Whenever raters are
interchangeable, it is necessary to account for the nested data structure that is present due
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to the underlying two-step sampling procedure [4], which can be achieved via conducting
multilevel CFA (MCFA).

While many software programs can perform complex statistical analyses, Mplus is
probably one of the best-equipped programs for latent variable modeling [6,7]. As Mplus
provides various corrections for non-normal and non-independent data with and without
missing values, it is also well-equipped to deal with common problems arising in practice
when applying MCFA [7]. However, Jak et al. [8] found that the χ2 goodness-of-fit test in
Mplus version 8.5 led to inflated type-I error rates when applying it to different two-level
CFA models. In reaction to their finding, Asparouhov and Muthén [9] implemented a
modified correction factor for the test statistic from version 8.7 on. In a small simulation
study, they demonstrated that the modified correction factor, which fixes problematic
parameters to values inside the admissible space, eliminates the inflated rejection rates
for the models that were affected in the simulation study conducted by Jak et al. [7,8].
Since then, to the best of our knowledge, no studies have been conducted to test the new
correction factor’s performance on more complex models.

The present simulation study had two aims. (1) Evaluating whether the new correction
factor implemented in Mplus version 8.7 sufficiently corrects the test statistic in conditions
with varying proportions of possibly problematic parameters in three more complex two-
level CFA-MTMM models and (2) identifying requirements pertaining to sample sizes on
both levels as well as within-trait correlations (WTC) for the χ2 test to work as intended
when working with those models. Additionally, we explored the statistical performance of
the root mean square error of approximation (RMSEA) and the comparative fit index (CFI)
before and after the new correction, as both of them are based on the χ2 test statistic [10]
(pp. 22–23).

The present article is structured as follows. First, we provide necessary background
information on the difference between interchangeable and structurally different methods
and the models we applied in the simulation study on different χ2 test statistics and their
correction factors in Mplus and on previous simulation studies reporting the performance
of χ2 test statistics for MCFA models in Mplus. Second, we describe the Monte Carlo
simulation study we conducted to examine the χ2 test statistics’ performance for varying
Mplus versions, models, and sample sizes on the between- and within-level, as well as
WTC. Finally, based on the results of the simulation study, we discuss the boundaries
of the χ2 test in Mplus when working with two-level CFA-MTMM models and provide
recommendations on using likelihood-based model fit statistics in applied research with
MCFA-MTMM models.

1.1. Interchangeable vs. Structurally Different Raters

Working with MTMM data, it is important to distinguish between interchangeable
and structurally different raters, as they differ in their sampling procedure as well as in the
way they need to be modeled [4]. Please note that, in this paper, we only included nested
designs in which all targets are rated by distinct, non-overlapping raters, i.e., in which a
given target is never rated by the same rater as any other target.

1.1.1. Interchangeable Raters

Interchangeable raters share their role to the target and stem from the same population
of possible raters with the same role [5,11]. If, for example, several teachers’ capabilities for
clarity, time management, and creating a supportive learning atmosphere (multiple traits)
are rated by a random sample of each teacher’s students, it could be reasonable to assume
that all students have the same role (being a student) and can therefore be considered
interchangeable. They do not necessarily have to agree on their teacher’s capabilities, but
as the amount of time and context in which they see them is similar, these students have
a similar basis of information when rating. In nested designs, interchangeable raters are
the result of a two-step sampling procedure [4]. In the first step, a set of level-2 units, e.g.,
teachers, is randomly drawn from the population of level-2 units, and in the second step,
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a set of level-1 units, e.g., students, is randomly drawn for each level-2 unit, e.g., teacher.
Due to the nested data structure, the appropriate CFA model for interchangeable raters is
an MCFA model in which raters are modeled on the within-level and traits (of targets) are
modeled on the between-level [4].

Generally, in a (two-level) MCFA model, the total covariance matrix of all observed
variables ΣT is decomposed into two covariance matrices: the between-level covariance
matrix ΣB and the within-level covariance matrix ΣW [12,13]:

ΣT = ΣB + ΣW (1)

The between- and within-level covariance matrices ΣB and ΣW are decomposed into
covariance matrices of the (common) factors on the between- (ΨB) and within- (ΨW) level
as well as between- and within-level residual covariance matrices ΘB and ΘW, ΛB and ΛW
being the matrices of all factor loadings on the between and within level [12,13]:

ΣB = ΛBΨBΛ
′
B + ΘB and ΣW = ΛWΨWΛ

′
W + ΘW (2)

Eid et al. [4] differentiate two types of MTMM models for interchangeable raters: mod-
els with heterogenous (indicator-specific) and models with homogenous (unidimensional)
trait factors. In the following, those types of models are described.

In a model with heterogenous trait factors, the observed ratings (Ytrik) for a target
t assessed by rater r via the ith indicator pertaining to trait k are decomposed into an
indicator-specific mean µik, a value on the indicator-specific trait variable Ttik multiplied
by its corresponding trait factor loading λTik, a value on the trait-specific method variable
Mtrk multiplied by its corresponding method factor loading λMik, and a value on the
indicator-specific measurement error variable Etrik:

Ytrik = µik + λTikTtik + λMikMtrk + Etrik (3)

The trait variables Ttik are modeled on the between-level, the rater-specific method variables
Mtrk as well as the residual variable Etrik are modeled on the within-level. Ttik, Mtrk, and
Etrik are assumed to have zero means. Additionally, it is assumed that all trait variables are
uncorrelated with all method variables as well as all error variables, that all method vari-
ables are uncorrelated with all error variables, and that all error variables are uncorrelated.
In models with heterogenous trait factors, correlations of trait factors belonging to the
same trait (WTC) are not perfect ( ̸=1) but should be very high if the observed variables are
assumed to measure the same trait. Correlations between trait factors of different traits, in
contrast, should be lower to indicate discriminant validity of the traits on the between-level.
All factor loadings λTik are set to one. As interchangeable raters are the only methods
in these models and as Ttik, Mtrk, and Etrik are centered, values on the trait variables Ttik
represent expected deviations of individual targets’ trait values from the expected value for
a given indicator µik across raters. The method variables Mtrk are unidimensional within
traits (not indicator-specific) but can vary between traits, which means that with these
method factors, the raters’ possible over- and underestimation pertaining to a specific target
and trait is modeled while over- and underestimation pertaining to a specific indicator is
not. Etrik contains deviations from the indicator-specific mean µik that are neither explained
by targets’ trait values nor by the raters’ over- or underestimation of the trait values [4].
Figure 1 depicts a model with two traits, three indicators per trait, and heterogenous
trait factors.

Figure 2, on the other hand, depicts a model with homogenous (unidimensional) trait
factors. In models with unidimensional trait factors, all WTC equal one, one underlying
trait factor Ttk is modeled for each trait, and only its first-factor loading λTik is set to one for
identification reasons, while all other λTik are freely estimated [4]. If all other parts of the
two models are identical, a model with unidimensional trait factors is a more restrictive
version of its corresponding model with heterogenous trait factors [2,4].
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Figure 1. Multilevel multitrait-multimethod factor model for interchangeable raters only with het-
erogenous trait factors. Ttik = indicator-specific trait factors; Ytrik = observed variables; Etrik = re-
sidual variables; Mtrk = rater-specific method variables; λMik = estimated method factor loadings; 
t = target (e.g., teacher); r = rater (e.g., student). The model contains two traits (clarity and time 
mgmt = management) and three indicators per trait. As trait factors are indicator-specific, within-
trait correlations (WTC) do not equal one, and all trait factor loadings are set to one. Method factors 
are unidimensional within but not between traits. The first loading of each method factor is set to 
one for identification reasons. Figure adapted with permission from Figure 1 in Ulitzsch et al. [14]. 

 
Figure 2. Multilevel multitrait-multimethod factor model for interchangeable raters only with ho-
mogenous (unidimensional) trait factors. Ttk = trait factors (not indicator-specific); Ytrik = observed 
variables; Etrik  = residual variables; Mtrk  = rater-specific method variables; λTik  = estimated trait 
factor loadings; λMik = estimated method factor loadings; t = target (e.g., teacher); r = rater (e.g., 
student). The model contains two traits (clarity and time mgmt = management) and three indicators 
per trait. As trait factors are unidimensional, within-trait correlations (WTC) equal one, and only 
the first loading of each trait factor is set to one for identification reasons. Likewise, the first loading 
of each method factor is set to one. Method factors are unidimensional within but not between traits. 
Figure adapted with permission from Figure 1 in Ulitzsch et al. [14]. 

In the two MCFA-MTMM models with interchangeable raters only displayed in Fig-
ures 1 and 2, the between-level covariance matrix ΣB contains those parts of the observed 
variables’ variances that stem from differences between targets, while the within-level co-
variance matrix ΣW contains those parts of the observed variables’ (co)variances that do 
not stem from differences between targets and instead trace back to method-effects, pos-
sible method-target interactions, and measurement error [4]. 

Figure 1. Multilevel multitrait-multimethod factor model for interchangeable raters only with
heterogenous trait factors. Ttik = indicator-specific trait factors; Ytrik = observed variables;
Etrik = residual variables; Mtrk = rater-specific method variables; λMik = estimated method factor
loadings; t = target (e.g., teacher); r = rater (e.g., student). The model contains two traits (clarity
and time mgmt = management) and three indicators per trait. As trait factors are indicator-specific,
within-trait correlations (WTC) do not equal one, and all trait factor loadings are set to one. Method
factors are unidimensional within but not between traits. The first loading of each method factor
is set to one for identification reasons. Figure adapted with permission from Figure 1 in Ulitzsch
et al. [14].
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In the two MCFA-MTMM models with interchangeable raters only displayed in Fig-
ures 1 and 2, the between-level covariance matrix ΣB contains those parts of the observed 
variables’ variances that stem from differences between targets, while the within-level co-
variance matrix ΣW contains those parts of the observed variables’ (co)variances that do 
not stem from differences between targets and instead trace back to method-effects, pos-
sible method-target interactions, and measurement error [4]. 

Figure 2. Multilevel multitrait-multimethod factor model for interchangeable raters only with
homogenous (unidimensional) trait factors. Ttk = trait factors (not indicator-specific); Ytrik = observed
variables; Etrik = residual variables; Mtrk = rater-specific method variables; λTik = estimated trait factor
loadings; λMik = estimated method factor loadings; t = target (e.g., teacher); r = rater (e.g., student).
The model contains two traits (clarity and time mgmt = management) and three indicators per trait.
As trait factors are unidimensional, within-trait correlations (WTC) equal one, and only the first
loading of each trait factor is set to one for identification reasons. Likewise, the first loading of each
method factor is set to one. Method factors are unidimensional within but not between traits. Figure
adapted with permission from Figure 1 in Ulitzsch et al. [14].

In the two MCFA-MTMM models with interchangeable raters only displayed in
Figures 1 and 2, the between-level covariance matrix ΣB contains those parts of the observed
variables’ variances that stem from differences between targets, while the within-level
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covariance matrix ΣW contains those parts of the observed variables’ (co)variances that
do not stem from differences between targets and instead trace back to method-effects,
possible method-target interactions, and measurement error [4].

1.1.2. Structurally Different Raters

Structurally different raters stem from different rater populations characterized by
different roles to the target [4]. If, for instance, each teacher’s capabilities are assessed by
the principal of the respective teacher’s school as well as via self-ratings, it is reasonable
to assume that the raters (principals and teachers) have structurally different access to the
targets’ behavior and, therefore, represent different rater groups. Structurally different
raters appear more often in the behavioral and social sciences than interchangeable ones [4].
Because different raters are not repeatedly drawn from the same population and because
often, only one rater is drawn per structurally different rater group, e.g., the self and the
principal, MCFA would not be appropriate to analyze this type of rater data [4]. Instead, it
is appropriate to use models that contrast structurally different methods against each other,
like the CT-C(M-1) model, an advancement of the CT-CM model working with reference
methods [2,4]. Interchangeable and structurally different raters can also be combined in
MTMM studies. For example, the model displayed in Figure 3 shows an MCFA-MTMM
model for a combination of interchangeable structurally different raters with one set of
interchangeable raters and three structurally different rater groups. In the following,
the most important characteristics of models combining interchangeable and structurally
different raters, as described by Eid, Geiser, and Koch [11], are outlined.
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timated unique rater-specific factor loadings; t = target (e.g., teacher); r = rater (e.g., student). As 
trait-rater factors TRtkj on the between-level are unidimensional, within-trait correlations (WTC) 
for indicator-specific trait factors pertaining to interchangeable raters τtikj equal one. The first load-
ing of each factor is set to one for identification reasons. Figure adapted with permission from Figure 
7.1 in Eid et al. [11], forthcoming Fall 2024 (Guilford Press 2025). 

In models combining interchangeable and structurally different raters, the between-
level covariance matrix ΣB does not only contain those parts of the observed variables’ 
(co)variances that stem from differences between targets. Instead, each one of the j (struc-
turally different) rater groups, e.g., students, teachers, and principals, has its own trait 
factors TRtkj as well as measurement error variables pertaining to indicators of structur-
ally different raters, which are also modeled on the between-level. The within-level 

Figure 3. Multilevel multimethod factor model for a combination of one set of interchangeable raters,
e.g., students nested in teachers, and three structurally different rater groups, e.g., teachers, students,
and principals, with one unidimensional trait factor for each rater group, and three indicators per
trait. TRtkj = trait-rater factors; λTRikj = estimated trait-rater factor loadings; Ytrikj and Ytikj = observed
variables; Etrikj = residual variables; Mtrkj = unique rater-specific factors; λMikj = estimated unique
rater-specific factor loadings; t = target (e.g., teacher); r = rater (e.g., student). As trait-rater factors
TRtkj on the between-level are unidimensional, within-trait correlations (WTC) for indicator-specific
trait factors pertaining to interchangeable raters τtikj equal one. The first loading of each factor is set
to one for identification reasons. Figure adapted with permission from Figure 7.1 in Eid et al. [11],
forthcoming Fall 2024 (Guilford Press 2025).
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In models combining interchangeable and structurally different raters, the between-
level covariance matrix ΣB does not only contain those parts of the observed variables’
(co)variances that stem from differences between targets. Instead, each one of the j (struc-
turally different) rater groups, e.g., students, teachers, and principals, has its own trait
factors TRtkj as well as measurement error variables pertaining to indicators of structurally
different raters, which are also modeled on the between-level. The within-level covariance
matrix ΣW in such a model contains those parts of the observed variables’ (co)variances
that do not stem from differences between targets and structurally different raters and
instead trace back to rater-specific effects pertaining to interchangeable raters, e.g., students,
interactions between interchangeable raters and targets, and measurement error in the
ratings of interchangeable raters. All level-2 factors (trait-rater factors) can be correlated
in this model, and their correlations indicate the degree to which ratings of structurally
different raters converge. Observed scores Ytikj pertaining to structurally different raters,
which are modeled on the between-level only, are composed of an indicator-specific as
well as rater group-specific mean µikj, a score on the trait-rater factor TRtkj multiplied by an
indicator, as well as rater group-specific trait-rater factor loading λTRikj and a score on the
residual variable Etikj:

Ytikj = µikj + λTRikjTRtkj + Etikj (4)

Observed scores Ytrikj pertaining to interchangeable raters contain an additional within-
level part that consists of a score on the rater-specific factor Mtrkj multiplied by a rater
group-specific factor loading λMikj, and a rater-specific score on the within-level residual
variable Etrikj:

Ytrikj = µikj + λTRikjTRtkj + λMikjMtrkj + Etrikj (5)

The model also allows for the inclusion of indicator-specific trait-rater factors for inter-
changeable raters τtikj on the between-level:

Ytrikj = µikj + τtikj + λMikjMtrkj + Etrikj (6)

Just like in models with interchangeable raters only, reliability coefficients in models with a
combination of structurally different and interchangeable raters represent those parts of
the observed variables’ total variances that do not trace back to measurement error [4,11].
They are calculated as shown in (7) and (8) for observed variables pertaining to structurally
different and interchangeable raters, respectively.

Rel(Ytikj) = 1 −
Var(Etikj)

Var(Ytikj)
=

λ2
TRikjVar(TRtkj)

Var(Ytikj)
(7)

Rel(Ytrikj) = 1 −
Var(Etrikj)

Var(Ytrikj)
=

λ2
TRikjVar(TRtkj) + λ2

URikjVar(Mtrkj)

Var(Ytrikj)
(8)

The consistency and method specificity coefficients in models with a combination of in-
terchangeable and structurally different raters describe those proportions of an observed
variable’s “true” variance, i.e., variance which does not trace back to measurement error,
that are due to variance in the trait-rater factors (TRtkj) and in the unique rater-specific
factors (Mtrkj), respectively:

CO(τtikj) =
λ2

TRikjVar(TRtkj)

λ2
TRikjVar(TRtkj) + λ2

URikjVar(Mtrkj)
(9)

MS(τtikj) =
λ2

URikjVar(Mtrkj)

λ2
TRikjVar(TRtkj) + λ2

URikjVar(Mtrkj)
(10)
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An example of an MCFA-MTMM model with a combination of interchangeable and struc-
turally different raters and two traits can be found in Eid et al. [11]. In models with more
than one trait, additional level-1 factors can be correlated [11].

1.2. Chi-Square Test in Mplus

The χ2 test statistic for testing global fit hypotheses that is implemented in Mplus
differs, among other things, between Mplus versions as well as estimators [10]. Information
on the three different fit statistics relevant to the present study is given in the following
three subsections.

1.2.1. Chi-Square Test for the ML Estimator

The maximum likelihood (ML) estimator in Mplus calculates a χ2 test statistic based
on an ML fitting function FML, which allows to minimize the discrepancy between the
model-implied and the empirical covariance matrix [10]. The fitting function Mplus applies
to clustered data with equal cluster sizes and can be found in the program’s technical
appendix [10] (p. 42). The χ2 test is a likelihood-ratio χ2 test of model fit comparing two
nested models’ likelihoods [10]. The H0 model is the user-specified one, while the H1
model is a baseline model with unrestricted means and covariances [10] (p. 21). The fitting
function FML equals the difference of the two models’ log-likelihood values L0 and L1 both
divided by the total sample size [10]:

FML = −L0/n + L1/n (11)

The likelihood-ratio χ2 test statistic TML for the ML estimator equals 2·n·FML [10]:

TML = 2·n·FML = 2(L1 − L0) (12)

1.2.2. Chi-Square Test for the MLR Estimator before Mplus Version 8.7

When observations are not multivariate normally distributed, the χ2 test statistic,
as well as the parameters’ standard errors, need to be corrected, which can be achieved
via the MLR estimator [7]. The robust maximum likelihood (MLR) estimator provides
the test statistic TMLR, which is asymptotically equivalent to the Yuan-Bentler T∗

2 test
statistic [7,9,15]:

TMLR = 2(L1 − L0)/c (13)

The log-likelihoods (and the fitting function) in MLR estimation differ from those in simple
ML estimation as they include a robust covariance matrix for the estimated parameters [10]
(p. 19). TMLR contains the correction factor c, which, in turn, is calculated based on the two
nested models’ likelihood-ratio test (LRT) correction factors c1 and c0 as well as the number
of parameters in these models f1 and f0:

c =
c1 f1 − c0 f0

f1 − f0
(14)

The LRT correction factors c1 and c0 are calculated based on the models’ parameter esti-
mates, numbers of estimated parameters, log-likelihoods, and the total sample size [9]. The
MLR estimator is the default estimator for multilevel analysis in Mplus [7].

1.2.3. Chi-Square Test for the MLR Estimator since Mplus Version 8.7

Jak et al. [8] showed that the application of the default MLR estimator can result in
inflated type-I error rates for certain multilevel models. Particularly, inflated error rates
appear when level-2 residual variances are zero in the population and a model with freely
estimated level-2 residual variances is applied. However, the problem also occurs when
fixing the level-2 residual variances to zero in the applied model (albeit to a somewhat
lesser extent). It is important to note that it is not possible to fix the level-2 residual variance
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exactly to zero, but Mplus fixes it to a very small value, which depends on the applied
model, estimator, and algorithm, e.g., 0.0001 [9].

The results of Jak et al.’s study [8] are important for MCFA-MTMM models for two
reasons. First, models with a common trait factor and zero level-2 residual variances often
occur in applications. For real applications of MCFA-MTMM models see, for example, the
suggested literature in Eid et al. [11]. Second, if a model with correlated indicator-specific
trait variables is applied, the estimated correlations can be very large (especially when the
traits are perfectly correlated). Therefore, it is important to determine whether this problem
for applying MCFA-MTMM models can be cured.

As a reaction to Jak et al. [8], Asparouhov and Muthén [9] implemented a modified
correction for the test statistic in Mplus version 8.7. They pointed out that the upward
bias for TMLR with the old correction factor appeared in models with large proportions of
problematic parameters q, which are parameters with log-likelihood derivatives unequal
to zero. Parameters can have log-likelihood derivatives unequal to zero when they are
estimated to a parameter outside the admissible space in unconstrained ML (including
MLR) estimation and are fixed to a parameter inside the admissible parameter space in
the constrained ML estimation implemented in Mplus [9]. Two common examples of
problematic parameters are correlations estimated to a value above one in absolute value
and variances estimated to a negative value [9]. While problematic parameter estimates
can be fixed to a value inside the admissible parameter space, e.g., a negative variance to
0.0001 or a correlation above 1 to 1, by users specifying the H0 model, which Mplus does
automatically for variances set to zero [9], they cannot be fixed by users in the corresponding
unrestricted H1 model, as the H1 model is created automatically [9]. Thus, the bias in TMLR
could remain even when problematic parameter estimates are removed by fixing them to
a value inside the admissible space in the input file [9]. This is why, from version 8.7 on,
the modified correction factor corrects both models’ LRT correction factors c0 and c1 [9].
From Mplus version 8.7 on, a model M* (i.e., M*

0 and M*
1) is created, in which all q (q0 and

q1) problematic parameters of a given model M (M0 and M1 being the specified model and
the unrestricted H1 model, respectively) are held fixed to the estimated values [9]. Mplus
automatically checks for problematic parameters, so no additional commands are necessary
to request the new correction [9].

Asparouhov and Muthén pointed out that as a large proportion of problematic param-
eters is rather uncommon in real data applications, the new correction is not expected to
have a big impact [9]. Due to the unusually large proportion of problematic parameters
in the MCFA models tested by Jak et al. [8], Asparouhov and Muthén point out that the
conditions in their simulation are an “extreme situation” [9] (p. 548) and refer to the modi-
fied correction factor as “the new log-likelihood correction factor in extreme and boundary
solutions” [9] (p. 547). However, these situations can be expected in many applications of
MCFA-MTMM models.

1.3. Previous Simulation Studies

Table 1 contains a brief review of previous simulation studies which reported results on
the performance of χ2 test statistics in Mplus when applying MCFA models similar to those
tested in the present study. According to these studies, several factors can possibly lead
to a biased χ2 test for different MCFA models: small sample sizes on the between- as well
as on the within-level, low intraclass correlation (ICC), complex models (many traits and
methods), high WTC, the non-robust estimator (ML), as well as Mplus versions prior to the
correction. The problematic parameters in the models tested by Jak et al. [8] were correlation
parameters and residual variances on the between-level on the boundary of the admissible
space. Precisely, the conditions that led to inflated type-I error rates in their study were
conditions in which all between-level residual variances were set to zero in the population
models. By setting the residual variances to zero, in those conditions, correlations between
all indicators on the between-level were one in the population models [8,9]. In the estimated
models, Jak et al. [8] tested freely estimating residual variances as well as fixing them
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to zero. The type-I error rates were inflated in both cases, which might trace back to
correlations as well as residual variances being on the boundary of the admissible parameter
space [9]. The bias was less severe in conditions with fixed residual variances in the fitted
models, maybe because in those conditions, only correlations close to one remained as
problematic parameters.

Table 1. Previous simulations in Mplus applying MCFA models and reporting results on χ2.

Study Models nL2 nL1 est. ver. mis. Results

Koch et al.
(2014) [3]

Latent
State-Combination-Of-

Methods (LS-COM)
model (longitudinal

MCFA-MTMM)

100, 250, 500 2, 5, 10, 20 ML 6.1 no

Slight downward bias in χ2

across all sample sizes, less
severe for less complex
models; approx. correct

rejection rates.

Pornprasertmanit
et al. (2014) [16]

MCFA with two factors
on both levels 50, 200 10, 40 ML 7 no

Convergence issues and
downward bias in rejection
rates for low ICC (0.05) in

nL2 = 200 & nL1 = 10
conditions; otherwise,

approx. correct
rejection rates.

Ulitzsch et al.
(2017) [14]

Models displayed in
Figures 1 and 2 100, 250, 500 2, 3, 5 ML 7.3 yes

Downward bias in χ2 for
models with WTC = 1 but

not with lower WTC (0.6 and
0.8) across all sample sizes,
with and without missings.

Koch et al.
(2017) [17]

Latent State-Trait
Combination-Of-

Methods (LST-COM)
models with

indicator-specific factors
and one vs. two

constructs

350, 700, 1400,
3000 1 2, 5, 10, 20 1 MLR 5.21 no

Marginal upward bias in χ2;
Approx. correct type-I error
rates for all conditions but
one with nL2 = 350, nL1 = 2,

and two traits.

Mahlke et al.
(2019) [18]

MCFA-MTMM model
with two sets of
interchangeable

methods, a structurally
different reference

method, and two vs.
three constructs

100, 250, 400 2, 4, 6, 8 ML 7 yes 2 Strong downward bias in χ2

across all sample sizes.

Eßer et al.
(2021) [19]

Model displayed in
Figure 1 50, 100, 150, 200 2, 4, 7, 9 3 ML 8.3 yes No bias in χ2 throughout all

conditions.

Jak et al. (2021) [8]

MCFA models with one
construct and varied

measurement invariance
conditions

50, 100, 200 20 MLR 8.5 no

Inflated type-I error rates for
models with residual

variances set to 0 in the
population model.

Asparouhov &
Muthén (2021) [9]

Replication of critical
models (residual

variances set to zero in
the population model)
from Jak et al. (2021)

100 20 MLR 8.6, 8.7 no
Inflated type-I error rates in
Mplus version 8.6, adequate

error rates in version 8.7.

Note. nL1 = Sample sizes on the within-level; nL2 = sample sizes on the between-level; est. = selected estimator;
ver. = Mplus version; mis. = simulated missing values; approx. = approximately. This table does not stem from a
systematic review and might not be exhaustive. It was mainly created to give a brief overview of previous results
relevant to the present study. Although closely related, the table does not include studies on rejection rates for
LRT tests on measurement invariance between groups in MCFA models like those conducted by Kim et al. [20,21],
as these were not the main focus of this work. 1 Only in this study, not all nL1 and nL2 were combined, just 2
and 350, 5 and 700, 10 and 1400, and 20 and 3000. 2 This study applied a planned missingness structure with a
large proportion of missing data. 3 This study included unbalanced designs. In unbalanced conditions, these nL1
are means.

1.4. Aims of the Present Study

While studies on sample size requirements for applying the χ2 test to MCFA-MTMM
models have been conducted with Mplus versions prior to the implementation of the
new correction factor (prior to version 8.7), we have not found any studies that have
investigated sample size requirements for applying the χ2 test with the new correction
factor (with versions from 8.7 on). The small simulation study conducted by Asparouhov
and Muthén [9] only demonstrated the efficacy of the new correction for the three MCFA
models tested by Jak et al. [8] and was limited to one sample size condition (100 between-
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and 20 within-level units). So far, to the best of our knowledge, no study has been conducted
in which:

• The number of possibly problematic parameters has been varied to test the new
correction factor implemented in Mplus version 8.7;

• The corrected χ2 test has been tested on more complex MCFA models than those in
Jak et al. [8];

• The current sample size requirements for the χ2 test for applying MCFA-MTMM
models have been investigated.

The present study fills this research gap by testing the χ2 goodness-of-fit test on the
three MCFA-MTMM models displayed in Figures 1–3 with varying amounts of potentially
problematic parameters. The aims of the present study are (1) to find out whether the new
correction factor sufficiently corrects the χ2 test statistic in conditions with a large propor-
tion of potentially problematic parameters and (2) to identify requirements pertaining to
sample sizes on both levels as well as WTC for the χ2 test to work as intended for three
different two-level CFA-MTMM models. With respect to the models in Figures 2 and 3,
the number of problematic parameters refers to the level-2 residual variances fixed to zero.
In the model in Figure 1, the probability of problematic parameters increases with the
within-trait correlations and can be expected for very high correlations. We assume that
the χ2 test results differ more between Mplus versions prior to and after the new correction
factor in conditions with a higher proportion of potentially problematic parameters than in
conditions with a smaller proportion.

2. Materials and Methods
2.1. Simulation Design

To examine the performance of the χ2 test statistics and the new correction factor
implemented in Mplus version 8.7, we conducted a Monte Carlo simulation study. The
simulation design was derived as follows.

Mplus versions were chosen to be varied to compare χ2 values with and without the
new correction factor. To ensure comparability with the study conducted by Jak et al. [8],
Mplus version 8.5 was chosen as the version prior to the implementation of the new
correction factor. Mplus version 8.7 was included as the first version with the new correction
factor. Additionally, the most recent version (version 8.10) was included to ensure that
the results attained in version 8.7 are still conferrable to more recent versions. Regarding
problematic parameters, we solely focused on correlations on the between-level by setting
the critical residual variances in the models with interchangeable raters to zero in both the
population model and the fitted one. Fixing them to zero is necessary according to MCFA-
MTMM theory, which is explained in Koch et al. [2]. Note that when users set residual
variances to zero on the between-level in the estimated model, Mplus automatically sets
them to 0.0001 for our modeling conditions. To vary potentially problematic correlations
on the between-level, we included the model with heterogenous trait factors displayed in
Figure 1 and simulated different WTC which increasingly approached one in four steps.
In applications of MCFA-MTMM models with heterogenous trait factors, appropriate
indicators should yield very large WTC [4]. We considered values between 0.60 and 0.95 to
be realistic in real applications. Additionally, we included the model with unidimensional
trait factors displayed in Figure 2, in which all WTC on the between-level equal one.
The choice to model those exact MCFA-MTMM models was made to allow for a direct
comparison with the simulation studies conducted by Ulitzsch et al. [14] and Eßer et al. [19].
Additionally, those relatively simple MCFA-MTMM models can be contained in more
complex MCFA-MTMM models like those applied, for instance, in the studies conducted
by Mahlke et al. [18] and Koch et al. [3,17]. Following the suggestion by Jak et al. [8]
to choose conditions in which some between-level residual variances in the population
are zero and some are not, we also included the model in Figure 3. In the model with a
combination of interchangeable and structurally different raters, there are indicators of
interchangeable ratings with residual variances equal to zero (and WTC equal to one) but



Psychol. Int. 2024, 6 472

also indicators of structurally different ratings with freely estimated residual variances on
the between-level. By including those three models and varying WTC in the model with
heterogenous trait factors, our simulation design allowed for testing the assumption that
the χ2 test results differ more between Mplus versions with and without the new correction
factor in conditions with many WTC equal to or sufficiently close to one than in conditions
with lower WTC.

Asparouhov and Muthén [9] demonstrated that the new correction is effective for
certain two-level models with 20 within-level units. However, previous studies that found
a bias in the χ2 distribution, such as those conducted by Mahlke et al. [18] and Ulitzsch
et al. [14], also included conditions with fewer, e.g., two, within-level units. To approach
possible boundaries for the test statistics to follow a χ2 distribution when applying MCFA-
MTMM models, we chose within-level units in the present study to range between 2 and
20. The number of between-level units was chosen to be varied similarly to the preceding
studies displayed in Table 1. In most multi-rater studies, research resources or practical
issues limit the attainable sample sizes on both levels. We regarded applications with down
to 2 interchangeable raters as realistic and studies with more than 20 raters or 500 targets as
rather unrealistic.

To summarize, the following variables were varied in the present study as indicated
in brackets:

• Mplus version (8.5, 8.7, 8.10);
• Model (models displayed in Figures 1–3);
• Within-trait correlations (0.60, 0.80, 0.90, 0.95) for heterogenous trait factors;
• Number of interchangeable raters/methods/within-level units (2, 5, 10, 20);
• Number of targets/between-level units (100, 250, 500).

In total, the simulation design thus consisted of (3 (targets) × 4 (methods) × 4 (WTC)
+ 2 (models without heterogenous traits) × 3 (targets) × 4 (raters)) × 3 (Mplus versions) =
216 conditions. A total of 1000 replications were simulated per condition.

2.2. Data Generation

Data were generated as well as analyzed with the Mplus MONTECARLO command [7].
One .txt template file was created for each of the three models included in the study
(Figures 1–3). Based on these three template files, one Mplus .inp file was generated for each
condition of the simulation design with the createModels() function included in the package
MplusAutomation [22] in R [23] via RStudio [24]. As the simulations were conducted on
three different computers (one per Mplus version), R and RStudio versions differed. For
creating .inp files for Mplus versions 8.5 and 8.7 and automatically running all of them with
the runModels() function included in MplusAutomation [22], R version 3.5.1 and RStudio
version 1.2.1335 were used. For Mplus version 8.10, the R version was 3.1.2, and the RStudio
version was 0.99.491.

To enable comparability to a prior simulation study conducted by Ulitzsch et al. [14]
that also applied the first two models present in this study and to mimic realistic data
conditions of an actual data set with teaching quality assessments [4], the following values
were set in the population model: correlations between all method factors and trait factors
pertaining to different traits were set to 0.47 and 0.52, respectively. In the third model
(combination of methods), correlations between the three trait-rater factors were set to 0.40.
Variances of all trait factors, as well as all trait-rater factors, were set to two. Error variances
were set to those values yielding consistency coefficients of 0.28 and reliability coefficients
of 0.69 for all indicators. For the sake of simplicity, factor loadings of all trait and method
factors, as well as intercepts of all indicators, were set to one. Figure A1 (Appendix A)
illustrates how the population values in the simulation were set for all models.

For all conditions, the fitted models were the same as the population models used for
data generation, but factor variances, covariances, loadings, and all indicators’ intercepts
were estimated instead of fixed. The values on which parameters were fixed in the popu-
lation model were used as starting values. Note that in the data generating, as well as in
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the fitted models, residual variances on the between-level of all indicators pertaining to
interchangeable raters were set to zero. Note that in the estimated models, Mplus automati-
cally set these variances to 0.0001. As the simulation did not include missing values, the
default settings of the TWOLEVEL command were kept, so the estimator was MLR and the
expected instead of the observed information was used [7].

2.3. Evaluation Criteria

R version 4.2.2, RStudio version 2023.6.0.421, and functions from the tidyverse pack-
ages [25] were used to analyze the .out files resulting from all simulations. To ensure
that results on the fit statistics are interpretable, warning messages in Mplus concerning
non-convergence and improper solutions were inspected prior to examining the fit statistics
for all conditions of the simulation design.

In line with the simulation studies conducted by Jak et al. [8] as well as Aparouhov
and Muthén [9], the χ2 test statistics were evaluated in terms of rejection rates based on
the simulated test statistics for a nominal alpha level of 0.05. According to Bradley [26],
deviations of type-I error probabilities from a given nominal alpha level can be considered
“negligible” if the probabilities lie between 0.9 and 1.1 times the nominal alpha level. As a
more liberal criterion for what constitutes “robustness”, Bradley suggested probabilities
between 0.5 and 1.5 times the nominal alpha level (p. 146). Therefore, in the present study,
we considered rejection rates between 0.045 and 0.055 as correct, rejection rates between
0.025 and 0.075 as adequate, and rejection rates above 0.075 as inflated. Additionally, the
simulated χ2 values’ distributions were investigated via probability-probability (P-P) plots
in which observed proportions of the simulated χ2 values exceeding the quantiles of a
theoretical χ2 distribution with the same degrees of freedom were plotted against the
corresponding expected theoretical proportions.

Moreover, as the RMSEA and the CFI are also based on the likelihood-ratio test
statistic [10] (pp. 22–23), we explored in which conditions the mean RMSEA and the mean
CFI across replications led to correct statistical decisions (i.e., accepting correctly specified
models) and whether there were conditions in which they led to a type-I error when using
the common rules of thumb for good model fit RMSEA ≤ 0.05 and CFI ≥ 0.97 [27].

3. Results
3.1. Convergence and Improper Solutions

Warning messages for the model with heterogeneous trait factors (Model 1) are dis-
played in Table 2, those for the model with interchangeable raters and homogeneous trait
factors (Model 2) and for the model with a combination of interchangeable and structurally
different raters (Model 3) are displayed in Table 3. The proportions of warning messages
were identical across the three Mplus versions for all three models.

In simulations concerning the first model, three different types of warning messages
arose: (1) “The estimation has reached a saddle point or a point where the observed and
the expected information matrices do not match”, (2) “The H1 model estimation did not
converge”, and (3) “The latent variable covariance matrix [Ψ] is not positive definite”.
In general, the proportions of warning messages in almost all conditions for this model
stayed below 5%. There was only one condition, the one with 500 targets, 2 raters, and a
WTC of 0.95, in which Mplus issued warning messages for more than 5% (11.2%) of the
replications, all of which concerned non-convergence of the H1 model estimation. Since
for all conditions with 100 and 250 targets as well as for the conditions with 500 targets
and 20 raters, proportions of warning messages stayed below 1% and, in many cases, were
equal to 0, they are not displayed in Table 2. A table with warning messages for the first
model, which includes all simulated conditions, can be found in Appendix A (Table A1).
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Table 2. Proportions of Mplus warning messages for the first model with interchangeable raters only
and heterogenous trait factors.

Heterogenous Trait Factors (WTC ̸= 1)
nt nr WTC Total SP NC Ψ

500 2 0.60 0 0 0 0
0.80 0.005 0.005 0 0.004
0.90 0.025 0.004 0.021 0.004
0.95 0.112 0 0.112 0

5 0.60 0 0 0 0
0.80 0 0 0 0
0.90 0 0 0 0
0.95 0.004 0.003 0 0.004

10 0.60 0 0 0 0
0.80 0 0 0 0
0.90 0 0 0 0
0.95 0.001 0.001 0 0.001

Note. Only for the first model, in which within-trait correlations (WTC) were varied, proportions of warning
messages per 1000 replications in Mplus are shown for the conditions with 500 targets and up to 10 raters.
nt = number of targets (level 2 units); nr = number of raters (level 1 units); Total = replications with warnings;
SP = “The estimation has reached a saddle point or a point where the observed and the expected information
matrices do not match”; NC = “The H1 model estimation did not converge”; Ψ = “The latent variable covariance
matrix [Ψ] is not positive definite”. Values above 0.05 are bold-faced.

Table 3. Proportions of Mplus warning messages for the second (interchangeable raters, homogenous
traits) and third model (interchangeable and structurally different raters).

Homogenous Trait Factors (WTC = 1)
Model 2 Model 3

nt nr Total SP NC ∂ Total SP NC ∂

100 2 0.564 0.564 0 0.002 0.292 0.285 0 0.007
5 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

250 2 0.683 0.683 0.001 0 0.358 0.358 0 0
5 0 0 0 0 0 0 0 0

10 0.001 0 0.001 0 0 0 0 0
20 0.003 0 0.003 0 0 0 0 0

500 2 0.876 0.752 0.479 0 0.452 0.446 0.012 0
5 0.497 0 0.498 0 0.025 0 0.025 0

10 0.497 0 0.498 0 0.021 0 0.021 0
20 0.486 0 0.488 0 0.024 0 0.024 0

Note. For each condition and only for the second and third model, proportions of warning messages per
1000 replications in Mplus are shown. nt = number of targets (level 2 units); nr = number of raters (level 1 units);
Total = replications with warnings, SP = “The estimation has reached a saddle point or a point where the observed
and the expected information matrices do not match”; NC = “The H1 model estimation did not converge”;
∂ = “non-positive definite first-order derivative product matrix”. Values above 0.05 are bold-faced.

The types of warning messages that occurred in simulations with Model 3 were the
same as those occurring in simulations with Model 1. For Model 2, in two replications, a non-
positive definite first-order derivative product matrix appeared as a fourth type of warning.
For both models (Model 2 and 3), a large proportion of warning messages (28.5% to 87.6%)
appeared in conditions with two raters, most of them concerning the estimation reaching a
saddle point or a point where the observed and the expected information matrices did not
match. Additionally, in the second model, in all conditions with 500 targets, the H1 model
estimation did not converge in almost 50% of the replications. In all other conditions, only
a negligible amount of warning messages emerged.



Psychol. Int. 2024, 6 475

Across all models and conditions, the estimation reaching a saddle point or a point
where the observed and the expected information matrices did not match was a problem
that mainly occurred for models with unidimensional trait factors and only two within-level
units. Nonconvergence was a problem that mainly affected the model with unidimensional
trait factors and interchangeable raters only (Model 2) and only conditions with the largest
number of targets (see Table 3).

3.2. Chi-Square Test

Rejection rates based on the χ2 test of model fit with a nominal alpha level of 0.05 are
presented in Tables 4 and 5 (Model 1) and in Table 6 (Model 2 and Model 3). Rejection
rates did not differ at all between the Mplus version in which the new correction was first
implemented (version 8.7) and the most recent version (8.10) and are thus presented in
shared columns.

Table 4. Rejection rates based on the χ2 test of model fit with an alpha level of 0.05 for the first model
with interchangeable raters only and heterogenous trait factors.

Heterogenous Trait Factors (WTC ̸= 1)
nt = 100 nt = 250 nt = 500

nr WTC Version 8.5 8.7 and 8.10 Version 8.5 8.7 and 8.10 Version 8.5 8.7 and 8.10

2 0.60 0.439 0.437 0.141 0.141 0.064 0.064
0.80 0.608 0.613 0.300 0.294 0.127 0.127
0.90 0.641 0.698 0.567 0.570 0.360 0.359
0.95 0.565 0.706 0.669 0.688 0.578 0.575

5 0.60 0.086 0.086 0.051 0.051 0.053 0.053
0.80 0.122 0.121 0.052 0.052 0.053 0.053
0.90 0.357 0.328 0.096 0.096 0.062 0.062
0.95 0.598 0.559 0.329 0.325 0.164 0.166

10 0.60 0.068 0.068 0.059 0.059 0.043 0.043
0.80 0.069 0.069 0.059 0.059 0.043 0.043
0.90 0.098 0.097 0.059 0.059 0.044 0.044
0.95 0.275 0.258 0.094 0.094 0.052 0.052

20 0.60 0.052 0.052 0.044 0.044 0.054 0.054
0.80 0.052 0.052 0.044 0.044 0.054 0.054
0.90 0.053 0.053 0.044 0.044 0.054 0.054
0.95 0.088 0.088 0.045 0.045 0.055 0.055

Note. For each condition and only for the first model, in which within-trait correlations (WTC) were varied,
rejection rates based on the χ2 test of model fit for 1000 replications are shown. nt = number of targets (Level 2
units); nr = number of raters (Level 1 units). Values above 0.075 are bold-faced.

Table 5. Comparison of rejection rates based on the χ2 test of model fit with an alpha level of 0.05 for
the first model between different sample size conditions yielding the same total N.

Heterogenous Trait Factors (WTC ̸= 1)
N = 1000 N = 2500 N = 5000

WTC nr = 2, nt = 500 nr = 10, nt = 100 nr = 5, nt = 500 nr = 10, nt = 250 nr = 10, nt = 500 nr = 20, nt = 250

0.60 0.064 0.068 0.053 0.059 0.054 0.044
0.80 0.127 0.069 0.053 0.059 0.054 0.044
0.90 0.359 0.097 0.062 0.059 0.054 0.044
0.95 0.575 0.258 0.166 0.094 0.055 0.045

Note. For conditions yielding total sample sizes of N = 1000, 2500, and 5000 and only for the first model, in which
within-trait correlations (WTC) were varied, rejection rates based on the χ2 test of model fit for 1000 replications
in the most recent Mplus version are shown. nt = number of targets (Level 2 units); nr = number of raters (Level 1
units). Values above 0.075 are bold-faced.
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Table 6. Rejection rates based on the χ2 test of model fit with an alpha level of 0.05 for the second and
third model with unidimensional trait factors.

Homogenous Trait Factors (WTC = 1)
Model 2 Model 3

nt nr Version 8.5 8.7 and 8.10 Version 8.5 8.7 and 8.10

100 2 0.324 0.244 0.233 0.196
5 0.170 0.097 0.158 0.144
10 0.130 0.064 0.132 0.106
20 0.122 0.060 0.154 0.132

250 2 0.183 0.165 0.138 0.134
5 0.096 0.077 0.085 0.074
10 0.106 0.083 0.080 0.073
20 0.100 0.083 0.089 0.088

500 2 0.134 0.134 0.108 0.106
5 0.095 0.089 0.078 0.077
10 0.087 0.085 0.077 0.076
20 0.080 0.070 0.062 0.059

Note. For each condition and for the second and third model, rejection rates based on the χ2 test of model fit for
1000 replications are shown. nt = number of targets (Level 2 units); nr = number of raters (Level 1 units). Values
above 0.075 are bold-faced.

In simulations applying the first model (Model 1, Table 4), for all Mplus versions, the
rejection rates were correct (4.5% ≤ rejection rate ≤ 5.5%) or adequate (2.5% ≤ rejection
rate ≤ 7.5%) in all conditions with 20 within-level units but the one with 100 targets and a
WTC of 0.95, in which they were inflated. In conditions with 10 raters, most rejection rates
were adequate. However, in conditions with the highest WTC (0.95) and 100 or 250 targets,
and in the condition with a WTC of 0.90 and 100 targets, rejection rates were inflated.

In conditions with five raters, while conditions with smaller WTC (0.60 and 0.80) and
250 or 500 targets yielded correct rejection rates, larger WTC (0.90 given 250 targets and
0.95 given 500 targets) went along with inflated rejection rates. In conditions with five
raters and 100 targets, all rejection rates were inflated. Finally, in conditions with only two
within-level units, rejection rates were inflated in all conditions but the one with 500 targets
and the lowest WTC (0.60). Altogether, there were rather small differences between the
version with the old (8.5) and the versions with the new correction factor (8.7 and 8.10).
Overall, larger total sample sizes went along with fewer type-I errors. However, across
conditions yielding the same total sample sizes (e.g., N = 1000), conditions with a smaller
number of raters and a larger number of targets (e.g., two raters and 500 targets) often went
along with higher rejection rates than those with a larger number of raters and a smaller
number of targets (e.g., 10 raters and 100; see Table 5).

In Mplus version 8.5, for both models with unidimensional trait factors (Models 2 and
3), rejection rates were inflated in all conditions but the one with 500 targets and 20 raters for
Model 3 (see Table 6). Overall, the rejection rates were smaller in conditions with the model
with interchangeable as well as structurally different raters (Model 3) than in conditions
with the model with interchangeable raters only (Model 2). Across Mplus versions and for
both models, an increasing number of targets went along with lower rejection rates. The
same applied to the number of raters. For both models and all Mplus versions, the highest
rejection rates resulted from conditions with two within-level units.

Given five within-level units, although the rejection rates were smaller than in con-
ditions with two, they were also inflated in almost all conditions. Only in one condition,
namely the one with five within-level units and 250 targets, for the model with a com-
bination of methods (Model 3), a previously inflated rejection rate (8.5%) was adequate
(7.4%) in the more recent Mplus versions (8.7 and 8.10). In conditions with 10 and 20 raters,
rejection rates further approached the nominal alpha level. In four conditions with 10 or
20 raters, the rejection rates were inflated in Mplus version 8.5 but adequate in the more
recent versions (8.7 and 8.10): the conditions with 100 targets and more than five raters,
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as well as conditions with 500 targets and 20 raters for Model 2 and the condition with
250 targets and 10 raters for Model 3.

In three out of five conditions in which the more recent Mplus versions yielded ade-
quate rejection rates, which were inflated prior to the implementation of the new correction
factor, which were conditions with 250 or 500 targets, differences in the rejection rates within
conditions between the old vs. more recent Mplus versions were rather small (around 1%).
In the other two conditions, which were the conditions with 100 targets and 10 as well as
20 raters for Model 2, the differences between the Mplus versions were larger (6.6% and
6.2%, respectively).

Figures 4–6 display P-P plots with the simulated vs. expected proportions of χ2

values exceeding theoretical quantiles of the corresponding theoretical χ2 distribution in
simulations applying the first model (Figure 1). It is important to note that the simulated
and expected proportions refer to the right tail of the χ2 distribution. That means, for
example, that the value 0.05 is the 0.95 quantile of the χ2 distribution, the value 0.10 is the
0.90 quantile, etc. Figures 4 and 5 cover conditions with few (two or five) raters and low
(Figure 4, WTC = 0.60 or 0.80) vs. high WTC (Figure 5, WTC = 0.90 or 0.95). Figure 6 covers
conditions with more (10 or 20) raters and a high WTC. The plot for more (10 and 20) raters
and low WTC (0.60 or 0.80) is displayed in Appendix A (Figure A2); as for those conditions,
the observed and expected proportions were (almost) identical across all target conditions
and Mplus versions.
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As seen in Figures 4–6, simulated proportions of χ2 values exceeding other theoretical
quantiles than the 0.05 quantiles (i.e., the rejection rates in Table 4) also only differed
marginally between the old and new Mplus versions. Just as for the rejection rates, as the
(other) values displayed in the P-P plots did not differ at all between the Mplus version in
which the new correction was first implemented (version 8.7) and the most recent version
(8.10); they are presented in shared columns.

For the first model, given a WTC of 0.60, the first condition to yield an approximately
correct χ2 distribution was the condition with two raters and 500 targets (see Figure 4).
While in conditions with fewer targets (100 or 250), the simulated χ2 values had a notable
upward bias, all conditions with at least five raters and any number of targets yielded very
close approximations of the corresponding χ2 distributions. In conditions with WTC of
0.80, more units were necessary for a good approximation. In those conditions, while five
raters and 100 targets only led to an approximately correct distribution, five raters and
250 targets led to a very good approximation. With increasing WTC, the number of units
necessary for a good approximation of the theoretical χ2 distribution increased further (see
Figures 5 and 6). With WTC of 0.90, while an approximately correct distribution was given
in conditions with five raters and 350 targets, a very good approximation was attained in
conditions with at least five raters and 500 targets. With WTC of 0.95, at least 10 raters and
250 targets were necessary for a very good approximation.

Figures 7 and 8 display P-P plots with the simulated vs. expected proportions of χ2

values exceeding theoretical quantiles of the corresponding theoretical χ2 distribution in
simulations applying the second (Figure 2) and third model (Figure 3), respectively.
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In the model with unidimensional traits and interchangeable raters only (Figure 2),
all WTC were one. In simulations applying this model, as compared to the model with
heterogenous trait factors (Figure 1), more differences occurred between Mplus versions
with the old (8.5) and new correction factors (8.7 and 8.10, see Figure 7). Especially in
conditions with 100 targets and at least five raters, the new correction factor led to better
approximations of χ2 distributions for the upper tails of the distributions, where rejections
happen. In the condition with 100 targets and two raters, the new correction factor also led
to a small improvement, but the simulated test statistics were still clearly overestimated in
the lower part of the distribution. Also, the new correction factor led to a downward bias in
the upper parts of the distributions in conditions with at least five raters. In conditions with
250 and 500 targets, the simulated values were much closer to the expected ones than in
those with 100 targets, and the new correction factor further enhanced the approximation,
but only slightly. In the most recent Mplus version, five raters were sufficient for a good
approximation of the theoretical χ2 distributions across the four different target conditions.
Given 500 targets, the distributions were also fairly well approximated with only two raters.

As seen in Figure 8, in simulations applying the model with a combination of inter-
changeable and structurally different raters (Figure 3), the new correction factor only led to
very small improvements. In the third, most complex model, very good approximations of
the expected quantiles could be attained in conditions with at least 250 targets and 10 raters
or 500 targets and 5 raters. In conditions with fewer units, the simulated χ2 values had a
visible upward bias.

Differences between the χ2 values in the old Mplus version without the correction
factor (8.5) and the two versions with the new correction factor (8.7 and 8.10) were largest
in conditions with unidimensional trait factors (WTC = 1) only (see Figure 7). Within the
model with heterogenous trait factors, differences between the old and new Mplus versions
were not bigger for larger WTC (e.g., 0.95 and 0.90; Figures 5 and 6) than for smaller WTC
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(e.g., 0.80 and 0.60; Figure 4) but rather small in all conditions. In the most complex model
with a combination of structurally different and interchangeable raters, differences between
Mplus versions were also rather small (Figure 8).
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3.3. RMSEA and CFI

Just like the χ2 test of model fit values, the mean RMSEA and CFI values did not differ
between Mplus versions 8.7 and 8.10. However, differences between version 8.5 and the
more recent versions were also very small.

Please note that the following two paragraphs refer to mean values across replications
instead of the fit indices’ distributions. This is only a rough exploration, and more complex
analyses considering their distributions within simulation conditions are necessary to
reliably derive sample size requirements for correct CFI and RMSEA in similar models
(also see Section 4.3).

Across all models, conditions, and Mplus versions, mean CFI were very close to
one. In conditions applying the two models with unidimensional trait factors (models
in Figures 2 and 3), all mean CFI were ≥0.97, so based on the mean CFI across replica-
tions, there were no type-I errors. In the model with heterogenous trait factors (model
in Figure 1), based on the mean CFI, three conditions led to type-I errors: those with two
raters, 100 targets, and WTC of 0.80, 0.90, and 0.95. The mean CFI in these conditions were
0.965 (SD = 0.078), 0.944 (SD = 0.123), and 0.934 (SD = 0.147), respectively, in the more
recent Mplus versions and slightly lower with 0.962 (SD = 0.084), 0.939 (SD = 0.130), and
0.927 (SD = 0.176), respectively, in version 8.5.
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A similar pattern occurred for the mean RMSEA: no type-I errors occurred based on the
mean RMSEA when applying the rule RMSEA ≤ 0.05 for the models with unidimensional
trait factors (models in Figures 2 and 3). In conditions with heterogenous trait factors
(Figure 1), there were seven conditions in which the mean RMSEA across replications led
to a type-I error:

• All conditions with 100 targets and two raters, which had mean RMSEA of 0.066
(SD = 0.095), 0.098 (SD = 0.123), 0.125 (SD = 0.143), and 0.139 (SD = 0.193) for the
lowest to highest WTC in the more recent Mplus versions (8.7 and 8.10) and the slightly
lower means of 0.065 (SD = 0.058), 0.097 (SD = 0.091), 0.124 (SD = 0.134), and 0.132
(SD = 0.191) in Mplus version 8.5;

• The condition with 100 targets, five raters, and a WTC of 0.95, which had a mean
RMSEA of 0.051 (SD = 0.044) in the more recent and of 0.068 (SD = 0.152) in the
older version;

• The conditions with 250 targets, two raters, and WTC of 0.90 and 0.95, which had mean
RMSEA of 0.055 (SD = 0.048) and 0.072 (SD = 0.070), respectively, in Mplus versions 8.7
and 8.10 and of 0.055 (SD = 0.050) and 0.076 (SD = 0.099), respectively, in version 8.5.

Apart from those seven conditions, the mean RMSEA across 1000 replications in all
conditions led to accepting the correctly specified models.

4. Discussion

The present simulation study was conducted to (1) evaluate whether the new cor-
rection implemented in Mplus version 8.7 sufficiently corrects the χ2 goodness-of-fit test
statistic for the MLR estimator in conditions with an increasing risk of problematic pa-
rameters in three different two-level CFA-MTMM models and to (2) identify requirements
pertaining to sample sizes on both levels as well as within-trait correlations (WTC) for the
χ2 test to work as intended for those models. More precisely, as previous simulation studies
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have shown that the Mplus default estimator until version 8.6 results in inflated type-I
error rates for models in which the level-2 residuals are fixed to zero by users—a situation
quite common in MCFA-MTMM models—simulation studies with respect to two models
of this type have been conducted and reported to figure out whether this problem is cured
in version 8.7. Moreover, as parameters that are potentially estimated to values outside
the admissible parameter space in unconstrained MLR estimation, WTC were varied in a
model with heterogenous trait factors to approach one in four steps (0.60, 0.80, 0.90, and
0.95) and to finally reach one in a model with unidimensional trait factors.

As MCFA essentially always includes goodness-of-fit evaluations and as likelihood-
based model fit evaluation is very popular, the present study’s results are relevant for
all applied researchers conducting MCFA with multiple factors (as correlations between
those factors can vary) in Mplus (and possibly other software which includes a test statistic
similar to the Yuan-Bentler T∗

2 test statistic [15]), as they might wonder whether and under
which circumstances the p-value of their χ2 goodness-of-fit test can be trusted. Especially
researchers applying MCFA-MTMM can profit from the sample size requirements derived
in our simulation study, as their models are expected to be most similar to ours (for examples
of applications, see, e.g., Danay and Ziegler [28], Konold [29], Konold and Sanders [30],
the studies listed in Eid et al. [11] and Geiser and Simmons [31]). Researchers applying
(other) MCFA models with multiple factors might use the instructions in the OSF project
linked in the present study’s data availability statement. The project includes a folder
(“Instructions on tailored Monte Carlo simulations”) with user-friendly instructions on how
to run Monte Carlo simulations tailored to modeling conditions other than those included
in the present study.

4.1. The Correction Factor in MCFA-MTMM Modeling

The first aim of the present study was to find out whether the new correction factor
sufficiently corrects the χ2 test statistics in conditions with a large proportion of potentially
problematic parameters. Investigating P-P plots which contrast the test statistics’ distribu-
tions in the Mplus versions prior to vs. after the implementation of the new correction factor,
we found that the proportion of problematic parameters was only large enough for the
correction factor to visibly influence the distributions in conditions in which all WTC were
one and all level-2 residual variances were fixed to 0 (i.e., in the model with unidimensional
trait factors and interchangeable raters only). Applying this model, the correction factor did
correct the lower parts of the distributions slightly in conditions with 100 targets. However,
in conditions with 100 targets and at least five raters, the new correction also led to un-
derestimated values in the upper parts of the distributions. In most conditions with WTC
of 0.95 or lower, the correction factor did not influence the χ2 values much, which might
be due to the low proportion of problematic parameters in these conditions. We assumed
that the implementation of the new correction factor has a bigger impact on the χ2 test
values in conditions with a larger proportion of potentially problematic parameters than in
conditions with few problematic parameters, as this was announced by Asparouhov and
Muthén [9] when implementing the new correction factor. This assumption was confirmed,
as the implementation had a bigger influence on the rejection rates and distributions of
the simulated test statistics, i.e., went along with larger differences in the rejection rates
between the Mplus versions prior to and after the implementation of the new correction, in
conditions with unidimensional trait factors (many WTC in the estimated models close to
one) than in models with heterogeneous trait factors.

4.2. Sample Size Requirements

The second aim of the present study was to identify requirements pertaining to sample
sizes on both levels as well as WTC for the χ2 test to work as intended for three different
two-level CFA-MTMM models. We varied the number of between-level units (100, 250,
500) as well as within-level units (2, 5, 10, 20) and found that across all models, the test
statistics performed best in conditions with large sample sizes on both levels. For the model
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with heterogenous trait factors, interestingly, the test statistics also performed notably
better in conditions with smaller WTC. In other words, rejection rates and the test statistics’
distributions increasingly diverged from the nominal alpha level and the expected χ2

distribution with decreasing sample sizes on both levels, as well as increasing WTC. As
this pattern occurred in Mplus versions with and without the new correction factor, the
phenomenon of more type-I errors occurring in conditions with larger WTC cannot be
traced back to those WTC being estimated to parameters outside the admissible space
(values above one).

In many conditions simulated in the present study, the finite samples were not large
enough for the asymptotic properties of the simulated test statistics to manifest. For the
model with heterogenous trait factors, rejection rates in the most recent Mplus version
turned out to be adequate in conditions with total sample sizes of 1000, 2000 to 2500,
and 5000 for WTC of 0.60 to 0.80, 0.90, and 0.95, respectively. Interestingly, different
combinations of targets and raters that yielded the same total sample sizes differed in
their rejection rates. Overall, conditions with fewer raters of more targets had higher
rejection rates than conditions with more raters of few targets. Thus, study designs with
more raters of few targets could yield correct rejection rates at lower total sample sizes
than designs with few raters of more targets. For the model with unidimensional trait
factors and interchangeable raters only, rejection rates were only adequate in conditions
with 100 targets and 10 or 20 raters, and the condition with 500 targets and 20 raters.
However, in all conditions with 500 targets, the model did not converge in almost 50% of
the replications. For the model combining interchangeable and structurally different raters,
adequate rejection rates were only attained in conditions with 250 targets and 5 or 10 raters,
and in the condition with 500 targets and 20 raters.

The results concerning rejection rates and distributions as well as nonconvergence
and warning messages, were identical in Mplus version 8.7, in which the new correction
factor was implemented, and version 8.10. Thus, we verified that all results attained in the
present study are applicable to the most recent Mplus version.

In the present study’s simulation conditions, across Mplus versions, two within-level
units were often not enough for the test statistics to follow a χ2 distribution. For the
models with unidimensional trait factors, conditions with two within-level units also led
to estimation problems. In those conditions, the estimation reached a saddle point or a
point where the observed and expected information matrices did not match in 30 to 75% of
the replications. The finding that two within-level units are often not enough for the MLR
estimator to yield correct rejection rates in sample size conditions, which might be expected
in MCFA-MTMM analyses, is in line with the study conducted by Koch et al. [17], who also
found an upward bias in conditions with two within-level units and 350 between-level units
for more complex MCFA-MTMM models [17]. However, models with two within-level
units might yield correct rejection rates in conditions with more between-level units than
simulated in the present study, for instance, about 1000 and 2500 for WTC of 0.90 and 0.95,
respectively. This has to be analyzed in future Monte Carlo simulation studies. The present
study could also replicate the finding reported by Asparouhov and Muthén [9] that the
MLR estimator yields correct rejection rates given 20 within-level units and 100 between-
level units for relatively simple two-level factor models. This finding was extended to two
somewhat more complex models (the two models with interchangeable raters only) and to
fewer (down to 10) within-level units in the present study (given WTC were 0.60, 0.80, or 1).
However, in models with unidimensional trait factors, the rejection rates were inflated in
most conditions, even with larger sample sizes on the between-level (e.g., 250 or 500 raters).
Additionally, the present simulation study is the first to reveal that the upward bias in
the χ2 test statistics that is present for the MLR estimator in Mplus not only depends on
sample sizes on both levels (small samples leading to a larger upward bias) but also on
model complexity (more complex models with more indicators leading to a larger upward
bias) and WTC (larger WTC leading to a larger upward bias). We also discovered that
in a model with heterogenous trait factors, larger samples could compensate for higher
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WTC and lower WTC could partly compensate for smaller samples. The χ2 test’s general
tendency to reject too many correctly specified models with growing model complexity
is in line with existing work on different (non-robust as well as robust) χ2 goodness-of-fit
test statistics [32–38]. A simulation study conducted by Shi et al. [38] indicates that the
numbers of observed variables, as well as estimated parameters, seem to be particularly
important contributing factors to the inflated rejection rates.

Several simulation studies using the (non-robust) ML estimator found a downward
bias in χ2 distributions [3,14,16,18]. The simulation study conducted by Jak et al. [8] also
included conditions, e.g., correctly specified models with 100 between-level units and
20 within-level units, in which the (non-robust) ML estimator had very low rejection rates
but performed better than the MLR estimator, which led to overestimated rejection rates
in the same conditions. Interestingly, with small enough WTC, this downward bias can
disappear, just like the upward bias that is present when using the MLR estimator can
disappear with smaller WTC. Eßer et al. [19] applied the ML estimator, included small
sample sizes (down to 2 within-level units and 50 between-level units), and set all WTC to
0.85. Under these conditions, the χ2 test statistics were unbiased. Likewise, combining the
ML estimator with down to 2 within-level units, 100 between-level units, and a WTC of 0.80
led to unbiased distributions in the study conducted by Ulitzsch et al. [14]. This finding is
particularly interesting as it indicates that the χ2 test in (non-robust) ML estimation can
be unbiased in conditions in which one might expect that it would not, that is, conditions
in which data have missing values (unbalanced designs) and few raters on the within
level, given correlations within heterogenous trait factors are small enough. Under these
conditions (e.g., 2 to 5within-level units, 100 between-level units, and WTC of 0.60 to
0.80), the ML estimator could even perform better than the MLR estimator (see Ulitzsch
et al. [14], who reported rejection rates in Mplus version 7.3 for those conditions with and
without missings).

4.3. RMSEA and CFI

Due to its well-known dependency on sample size and as it only tests the hypothesis
of exact fit, some researchers tend to rely on other fit statistics more than on the χ2 test
when evaluating model fit [39,40]. However, the χ2 test statistic is also often used for
nested model comparisons [41] and the calculation of other model fit statistics like the CFI
and the RMSEA [10]. Due to their dependency on the χ2 goodness-of-fit test, our study
also explored the performance of RMSEA and CFI in all simulated conditions. Based on
the mean RMSEA and CFI values, when following the rules of thumb for good model fit
RMSEA ≤ 0.05 and CFI ≥ 0.97, only a few type-I errors occurred, all of them in conditions
with heterogenous trait factors. The errors tended to occur in conditions with smaller
sample sizes and larger WTC, which indicates that the statistical performance of RMSEA
and CFI values, just like χ2 values, could also be affected by the interplay of small sample
sizes and high WTC when fitting MCFA-MTMM models. However, reliably deriving
sample size requirements for CFI and RMSEA in similar models would require scrutinizing
their distributions instead of only inspecting their mean values across replications. Using
the Mplus .out files to evaluate the performance of simulated CFI and RMSEA values is a bit
more complicated, as the distributions underlying the RMSEA and CFI values are assumed
to be normal in Mplus [7] (p. 471), which is usually false [42]. Their performance can instead
be evaluated with external Monte Carlo simulations [7] (p. 469). Comparing distributions
of simulated CFI and RMSEA values for multilevel factor models using the MLR estimator
to their theoretically expected distributions was, therefore, outside the scope of this study
but could be an interesting idea for future research.

4.4. Limitations and Future Directions

As Feinberg and Rubright put it, “In some cases, the extent to which findings based on
simulated data generalize to practice will depend on how well the simulated data conform
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to the empirical data that arise in practice” [43] (p. 37). On that note, there are some aspects
of the data simulated in our study that might be unrealistic in practical applications.

Firstly, in the population model, all factor loadings were set equal, all indicators were
chosen to have the same reliabilities, all indicators pertaining to interchangeable raters had
the same consistency, and the correlations between trait as well as method factors were
fixed to the same values. Our study showed that sample size requirements for the χ2 test
depend on WTC. Similarly, other values that were fixed in the population model in our
study might also influence the test statistic’s performance. Future studies might, therefore,
also vary those values (factor loadings, reliabilities, consistency [ICC]/method specificity
[low ICC could also lead to estimation problems [16]], and correlations between method
and trait factors pertaining to different traits [between-trait correlations]) to explore their
influence on likelihood-based test statistics applied to MCFA models.

Secondly, our simulation did not contain conditions with missing values. It should
be noted that the requirements pertaining to sample sizes and WTC discovered in our
study might not be conferrable to data with missing values. Applying non-robust (FI)ML
estimation in Mplus, within their studies, Ulitzsch et al. [14] and Eßer et al. [19] did not find
a notable influence of missings vs. no missings on the simulated test statistics‘ distributions.
However, to our knowledge, so far, nobody has tested the influence of missing values on
the performance of MLR-based goodness-of-fit test statistics for MCFA models. Recently,
Shi et al. compared the performance of model fit statistics for latent growth curve models
with non-normal data including missing values using different robust and non-robust ML
estimators (ML, MLM, MLR, MLMV) in Mplus [44]. They found that rejection rates for
the χ2 test were inflated for all estimators, and that rejection rates differed significantly
between sample size conditions, the number of time occasions, and three interactions
between the variables manipulated in the study [44]. Overall, they were most accurate
when selecting the MLMV estimator, but as the MLMV estimator requires complete data, it
was combined with listwise deletion [44]. Similarly, Savalei and Falk [45] found inflated
rejection rates for robust FIML estimation for single-level factor models with non-normal
data in EQS [46]. Jia [47] recently investigated the performance of two different pooled χ2

test statistics applied to single-level models, data with varying degrees of non-normality,
two kinds of multiple imputation, and different missing data mechanisms in the R package
semTools [48]. The MLR estimator went along with inflated rejection rates and, overall,
performed worse than the MLM and the MLMV estimator [47]. Hence, investigating
different fit statistics’ performance with missing data for MCFA (instead of single-level)
models using different robust estimators in Mplus or other software might still be an
interesting idea for future research.

Thirdly, we used the known population parameters as starting values in all estimated
models. This represents the best-case scenario for model estimation, and in practice, if
researchers use starting values, they are likely not as accurate as in our simulation. The
proportions of warning messages displayed in Tables 2 and 3 might be higher with less
accurate or no starting values. However, the pattern of rejection rates of the χ2 test can be
expected to hold in practice (when using other or the default starting values).

Additionally, some other notes are to be made on the boundaries of the present
study’s results. We only tested the performance of the χ2 goodness-of-fit test statistic for
correctly specified models. Thus, the present study does not allow for reporting results
on false negative results or the power to detect model misfit. For approaches to study
model misfit, see, e.g., Maydeu-Olivares [49]; for a recent simulation study on estimators’
power to detect misfit in (ordinal) MCFA in Mplus, see Padgett and Morgan [50]. A
simulation study conducted by Hsu et al. [40] found that the power to detect different
kinds of misspecification in multilevel models with the χ2 goodness-of-fit test depends
on the number of between-level units and ICC [40]. Expanding on those findings, future
studies could test the χ2 test statistic’s power to detect different kinds of misspecification
in more complex MCFA-MTMM models with heterogenous or simply more trait factors,
models with combinations of interchangeable and structurally different methods, and/or
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longitudinal models. Also, our study focused on the “standard” χ2 test of model fit, which
evaluates the goodness-of-fit for the entire model, i.e., jointly for the between- and the
within-level. In multilevel models, this test is expected to be dominated by misspecifications
on the within-level [40,51]. In the past few years, some studies have also investigated the
performance of level-specific fit indices for multilevel models [51–54]. In future studies,
investigations on the performance of level-specific fit indices could also be extended to
more complex MCFA-MTMM models. Finally, the present study only included continuous
indicators. In future studies, existing research on the performance of model fit statistics for
CFA-MTMM models with categorical observed variables [55–57] might also be extended to
more complex CFA-MTMM models, e.g., for nested or longitudinal data or a larger number
of traits.

5. Conclusions

Researchers evaluating the fit of MCFA-MTMM models, and multilevel factor models
in general, should be aware that the χ2 goodness-of-fit test can yield an increased probability
of type-I errors. The certainty with which the test statistic can be trusted can depend on
many different factors. Variables that might influence the test statistics’ performance
include sample sizes on both levels, correlations within trait factors, the chosen estimator
(robust vs. non-robust), software, the presence of missing data, non-normality of the
indicators, intraclass correlations and reliabilities, model complexity, as well as the size
of other model parameters. Table 7 contains an overview of sample sizes that are likely
sufficient for the χ2 test to yield correct rejection rates when applying the MLR estimator
in Mplus versions starting with version 8.7 for relatively simple and correctly specified
MCFA models with two traits. Models with unidimensional trait factors, i.e., within-trait
correlations equal to one, tend to require larger sample sizes than those with heterogenous
trait factors. However, applying those models, in some cases, larger sample sizes also come
along with a slightly higher risk of type-I errors than smaller ones. Thus, simple rules of
thumb pertaining to sample size requirements for likelihood-based goodness-of-fit test
statistics should be regarded with due caution, especially for models with unidimensional
trait factors.

Table 7. Combinations of sample sizes and within-trait correlations likely leading to correct or
incorrect statistical decisions based on the χ2 test of model fit with an alpha level of 0.05.

nt = 100 nt = 250 nt = 500
WTC/nr 2 5 10 20 2 5 10 20 2 5 10 20

0.60 ! ! ✓ ✓ ! ✓ ✓ ✓ ✓ ✓ ✓ ✓

0.80 ! ! ✓ ✓ ! ✓ ✓ ✓ ! ✓ ✓ ✓

0.90 ! ! ! ✓ ! ! ✓ ✓ ! ✓ ✓ ✓

0.95 ! ! ! ! ! ! ! ✓ ! ! ✓ ✓

Note. WTC = within-trait correlations; nt = number of targets (Level 2 units); nr = number of raters (Level 1 units);
! = (inflated) rejection rates above 0.075; ✓ = (adequate) rejection rates between 0.025 and 0.075.

In studies with data that are sufficiently similar to the data simulated in the present
study, similar sample size requirements can be expected. Therefore, when planning studies
that include overall model fit evaluations of simple MCFA-MTMM or similar MCFA models,
researchers can roughly estimate how many participants they need for the χ2 test to work
as intended by looking for the model and WTC which are most similar to their applied
model(s) in Table 7, and aim for sample sizes that yielded correct rejection rates in the
present study. However, for other conditions, e.g., more complex models, other estimators,
data with missing values, categorical indicators, other ICC, other reliabilities, etc., sample
size requirements might differ. The idea to simply ignore χ2 values and rely on other fit
statistics instead can also cause false conclusions as some of these coefficients, like CFI and
RMSEA, are based on the χ2 test statistic. Therefore, they might be affected by the same
variables. When in doubt, researchers might consider calculating required sample sizes
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tailored to their specific modeling conditions. Mplus .out files of Monte Carlo simulations
can easily be inspected to find out whether specific sample sizes are likely to yield correct
rejection rates for the χ2 test under the expected conditions [7] (p. 470). The OSF project
linked in the data availability statement includes a folder (“Instructions on tailored Monte
Carlo simulations”) with user-friendly instructions on how to run Monte Carlo simulations
tailored to other modeling conditions than those included in the present study.
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Appendix A

Table A1. Proportions of Mplus warning messages for the first model with interchangeable raters
only and heterogenous trait factors and all conditions.

Heterogenous Trait Factors (WTC ̸= 1)
nt = 100 nt = 250 nt = 500

nr WTC Total SP NC Ψ Total SP NC Ψ Total SP NC Ψ

2 0.60 0.002 0.002 0 0.002 0.006 0.006 0 0.006 0 0 0 0
0.80 0 0 0 0 0.005 0.005 0 0.005 0.005 0.005 0 0.004
0.90 0 0 0 0 0.001 0.001 0 0.001 0.025 0.004 0.021 0.004
0.95 0 0 0 0 0 0 0 0 0.112 0 0.112 0

5 0.60 0.001 0.001 0 0.001 0 0 0 0 0 0 0 0
0.80 0 0 0 0 0 0 0 0 0 0 0 0
0.90 0.002 0.002 0 0.002 0.007 0.006 0 0.007 0 0 0 0
0.95 0.001 0.001 0 0.001 0.001 0.001 0 0.001 0.004 0.003 0 0.004

10 0.60 0 0 0 0 0 0 0 0 0 0 0 0
0.80 0 0 0 0 0 0 0 0 0 0 0 0
0.90 0.002 0.002 0 0.002 0 0 0 0 0 0 0 0
0.95 0.001 0.001 0 0.001 0.003 0.002 0 0.003 0.001 0.001 0 0.001

20 0.60 0 0 0 0 0 0 0 0 0 0 0 0
0.80 0 0 0 0 0 0 0 0 0 0 0 0
0.90 0 0 0 0 0 0 0 0 0 0 0 0
0.95 0.002 0.001 0 0.002 0 0 0 0 0 0 0 0

Note. As Table 2 only contains conditions with 500 targets and up to 10 raters, this table includes all simulated
conditions for the first model, in which within-trait correlations (WTC) were varied. Proportions of warning
messages per 1000 replications in Mplus are shown. Values above 0.05 are bold-faced. nt = number of targets
(Level 2 units); nr = number of raters (Level 1 units); Total = replications with warnings; SP = “The estimation
has reached a saddle point or a point where the observed and the expected information matrices do not match”;
NC = “The H1 model estimation did not converge”; Ψ = “The latent variable covariance matrix [Ψ] is not positive
definite”. Values above 0.05 are bold-faced.
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