Next Issue
Volume 14, June-1
Previous Issue
Volume 14, May-1
 
 

Nanomaterials, Volume 14, Issue 10 (May-2 2024) – 85 articles

Cover Story (view full-size image): The production of niosomes at different weight ratios between surfactants (Span80/Tween80) was performed throughout an innovative, green, and continuous process assisted by supercritical CO2. Nanometric niosomes were successfully produced, presenting a narrow size distribution and high values (in modulus) of zeta potential, highlighting the stability of these nanovesicles. Vancomycin was selected as a model active compound: an encapsulation efficiency in niosomes up to 98% was measured, and in the case of PEGylated vesicles, drug release was prolonged and controlled over time. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 6094 KiB  
Article
Carbon Nanofiber Membranes Loaded with MXene@g-C3N4: Preparation and Photocatalytic Property
by Ching-Wen Lou, Meng-Meng Xie, Yan-Dong Yang, Hong-Yang Wang, Zhi-Ke Wang, Lu Zhang, Chien-Teng Hsieh, Li-Yan Liu, Mei-Chen Lin and Ting-Ting Li
Nanomaterials 2024, 14(10), 896; https://doi.org/10.3390/nano14100896 - 20 May 2024
Viewed by 342
Abstract
In this study, a Ti3C2 MXene@g-C3N4 composite powder (TM-CN) was prepared by the ultrasonic self-assembly method and then loaded onto a carbon nanofiber membrane by the self-assembly properties of MXene for the treatment of organic pollutants in [...] Read more.
In this study, a Ti3C2 MXene@g-C3N4 composite powder (TM-CN) was prepared by the ultrasonic self-assembly method and then loaded onto a carbon nanofiber membrane by the self-assembly properties of MXene for the treatment of organic pollutants in wastewater. The characterization of the TM-CN and the C-TM-CN was conducted via X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrometer (FTIR) to ascertain the successful modification. The organic dye degradation experiments demonstrated that introducing an appropriate amount of Ti3C2 MXene resulted in the complete degradation of RhB within 60 min, three times the photocatalytic efficiency of a pure g-C3N4. The C-TM-CN exhibited the stable and outstanding photocatalytic degradation of the RhB solution over a wide range of pH values, indicating the characteristics of the photodegradation of organic pollutants in a wide range of aqueous environments. Furthermore, the results of the cyclic degradation experiments demonstrated that the C-TM-CN composite film maintained a degradation efficiency of over 85% after five cycles, thereby confirming a notable improvement in its cyclic stability. Consequently, the C-TM-CN composite film exhibits excellent photocatalytic performance and is readily recyclable, making it an auspicious eco-friendly material in water environment remediation. Full article
(This article belongs to the Special Issue Advances in Polymer Nanofilms)
Show Figures

Figure 1

18 pages, 18368 KiB  
Article
Development of Biologically Active Phytosynthesized Silver Nanoparticles Using Marrubium vulgare L. Extracts: Applications and Cytotoxicity Studies
by Alina Ioana Lupuliasa, Răzvan Mihai Prisada, Roxana Ioana Matei (Brazdis), Sorin Marius Avramescu, Bogdan Ștefan Vasile, Radu Claudiu Fierascu, Irina Fierascu, Bianca Voicu-Bălașea, Marina Meleșcanu Imre, Silviu-Mirel Pițuru, Valentina Anuța and Cristina Elena Dinu-Pîrvu
Nanomaterials 2024, 14(10), 895; https://doi.org/10.3390/nano14100895 - 20 May 2024
Viewed by 372
Abstract
Metal nanoparticle phytosynthesis has become, in recent decades, one of the most promising alternatives for the development of nanomaterials using “green chemistry” methods. The present work describes, for the first time in the literature, the phytosynthesis of silver nanoparticles (AgNPs) using extracts obtained [...] Read more.
Metal nanoparticle phytosynthesis has become, in recent decades, one of the most promising alternatives for the development of nanomaterials using “green chemistry” methods. The present work describes, for the first time in the literature, the phytosynthesis of silver nanoparticles (AgNPs) using extracts obtained by two methods using the aerial parts of Marrubium vulgare L. The extracts (obtained by classical temperature extraction and microwave-assisted extraction) were characterized in terms of total phenolics content and by HPLC analysis, while the phytosynthesis process was confirmed using X-ray diffraction and transmission electron microscopy, the results suggesting that the classical method led to the obtaining of smaller-dimension AgNPs (average diameter under 15 nm by TEM). In terms of biological properties, the study confirmed that AgNPs as well as the M. vulgare crude extracts reduced the viability of human gingival fibroblasts in a concentration- and time-dependent manner, with microwave-assisted extracts having the more pronounced effects. Additionally, the study unveiled that AgNPs transiently increased nitric oxide levels which then decreased over time, thus offering valuable insights into their potential therapeutic use and safety profile. Full article
Show Figures

Graphical abstract

17 pages, 3508 KiB  
Article
Targeting Inflammation and Oxidative Stress to Improve Outcomes in a TNBS Murine Crohn’s Colitis Model
by Anisha Apte, James R. Bardill, Jimena Canchis, Stacy M. Skopp, Tobias Fauser, Bailey Lyttle, Alyssa E. Vaughn, Sudipta Seal, David M. Jackson, Kenneth W. Liechty and Carlos Zgheib
Nanomaterials 2024, 14(10), 894; https://doi.org/10.3390/nano14100894 - 20 May 2024
Viewed by 378
Abstract
Inflammation and oxidative stress are implicated in the pathogenesis of Crohn’s disease. Cerium oxide nanoparticle (CNP) conjugated to microRNA 146a (miR146a) (CNP-miR146a) is a novel compound with anti-inflammatory and antioxidative properties. We hypothesized that local administration of CNP-miR146a would improve colitis in a [...] Read more.
Inflammation and oxidative stress are implicated in the pathogenesis of Crohn’s disease. Cerium oxide nanoparticle (CNP) conjugated to microRNA 146a (miR146a) (CNP-miR146a) is a novel compound with anti-inflammatory and antioxidative properties. We hypothesized that local administration of CNP-miR146a would improve colitis in a 2,4,6-Trinitrobenzenesulfonic acid (TNBS) mouse model for Crohn’s disease by decreasing colonic inflammation. Balb/c mice were instilled with TNBS enemas to induce colitis. Two days later, the mice received cellulose gel enema, cellulose gel with CNP-miR146a enema, or no treatment. Control mice received initial enemas of 50% ethanol and PBS enemas on day two. The mice were monitored daily for weight loss and clinical disease activity. The mice were euthanized on days two or five to evaluate their miR146a expression, inflammation on histology, and colonic IL-6 and TNF gene expressions and protein concentrations. CNP-miR146a enema successfully increased colonic miR146a expression at 12 h following delivery. At the end of five days from TNBS instillation, the mice treated with CNP-miR146a demonstrated reduced weight loss, improved inflammation scores on histology, and reduced gene expressions and protein concentrations of IL-6 and TNF. The local delivery of CNP-miR146a in a TNBS mouse model of acute Crohn’s colitis dramatically decreased inflammatory signaling, resulting in improved clinical disease. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

4 pages, 179 KiB  
Editorial
Nanomaterials for Potential Uses in Extraterrestrial Environments
by Angelo Nicosia and Placido Mineo
Nanomaterials 2024, 14(10), 893; https://doi.org/10.3390/nano14100893 - 20 May 2024
Viewed by 271
Abstract
Over the past decades, the development of nanomaterials has played an important role in the most intriguing aspects of new technologies in several scientific fields, such as nanoelectronics, nanomedicine [...] Full article
(This article belongs to the Special Issue Nanomaterials for Potential Uses in Extraterrestrial Environments)
30 pages, 12075 KiB  
Review
Research Progress on the Preparation Methods for and Flame Retardant Mechanism of Black Phosphorus and Black Phosphorus Nanosheets
by Wuyan Cao, Dengwang Lai, Jun Yang, Li Liu, Hao Wu, Jin Wang and Yuejun Liu
Nanomaterials 2024, 14(10), 892; https://doi.org/10.3390/nano14100892 - 20 May 2024
Viewed by 350
Abstract
Black phosphorus and black phosphorus nanosheets are widely used in the flame retardant field because of their excellent properties, but the immature preparation methods have resulted in extremely high preparation cost, which greatly limits their development and application. In this paper, various preparation [...] Read more.
Black phosphorus and black phosphorus nanosheets are widely used in the flame retardant field because of their excellent properties, but the immature preparation methods have resulted in extremely high preparation cost, which greatly limits their development and application. In this paper, various preparation methods of black phosphorus and black phosphorus nanosheets are described in detail, the advantages and disadvantages of each method are analyzed in depth, the flame-retardant mechanism and application of black phosphorus and black phosphorus nanosheets in flame retardants are discussed, and the subsequent development direction of black phosphorus and black phosphorus nanosheets is proposed. Full article
(This article belongs to the Special Issue Design, Fabrication and Applications of Nanoporous Materials)
Show Figures

Figure 1

16 pages, 1191 KiB  
Article
Nanoparticle-Modified 3D-Printed Denture Base Resins: Influence of Denture Cleansers on the Color Stability and Surface Roughness In Vitro
by Mohammed M. Gad, Abdulrahman Khattar, Doha M. Alramadan, Zainab H. Al Dawood, Sujood S. Al Shehab, Rabab H. Al Zaher, Layal Osama Alzain, Soban Q. Khan and Mohamed Y. Abdelfattah
Nanomaterials 2024, 14(10), 891; https://doi.org/10.3390/nano14100891 - 20 May 2024
Viewed by 404
Abstract
This study aimed to evaluate the influence of denture cleansers on the color, stability, and surface roughness of three-dimensional (3D)-printed denture base resins modified with zirconium dioxide nanoparticles (nano-ZrO2). A total of 440 specimens were fabricated using one heat-polymerized resin, and [...] Read more.
This study aimed to evaluate the influence of denture cleansers on the color, stability, and surface roughness of three-dimensional (3D)-printed denture base resins modified with zirconium dioxide nanoparticles (nano-ZrO2). A total of 440 specimens were fabricated using one heat-polymerized resin, and two 3D-printed resins (NextDent and ASIGA). According to the nano-ZrO2 content, the specimens for each resin were divided into five groups (0%, 0.5%wt, 1%wt, 3%wt, and 5%wt). Each concentration was divided into four subgroups (n = 10) based on the immersion solution (distilled water, sodium hypochlorite, Corega, and Fittydent) and immersion duration (360 and 720 days). The color changes (∆E00) and surface roughness (Ra, µm) of each specimen were measured at different time intervals (base line, 360 days, 720 days) using a spectrophotometer and a non-contact profilometer, respectively. The results were statistically analyzed using ANOVA and a post hoc Tukey’s test (α = 0.05). Sodium hypochlorite showed the highest significant color change of all the denture base resins (p < 0.001). The average value of ΔE00 for sodium hypochlorite was significantly higher than the values for the other solutions (Fittydent, Corega, and water) (p < 0.001). Color stability was significantly affected by immersion time for all types of solutions except Corega (p < 0.001). All of the tested immersion solutions (distilled water, sodium hypochlorite, Corega, and Fittydent) showed a significant increase in the surface roughness of all the denture base resins (p < 0.05). Surface roughness was substantially increased by immersion time for all types of solution except Fittydent (p < 0.001). Denture cleansers can result in substantial color change and affect the surface roughness of unmodified and nanoparticle-modified denture base resins. Therefore, the selection of denture cleanser and appropriate types of material is critical for denture longevity. Full article
(This article belongs to the Special Issue Functional Nanocomposites: From Strategic Design to Applications)
Show Figures

Figure 1

24 pages, 3598 KiB  
Article
Nanocomposites Derived from Construction and Demolition Waste for Cement: X-ray Diffraction, Spectroscopic and Mechanical Investigations
by Roxana Rada, Daniela Lucia Manea, Andrzej Nowakowski and Simona Rada
Nanomaterials 2024, 14(10), 890; https://doi.org/10.3390/nano14100890 - 20 May 2024
Viewed by 320
Abstract
In the production of cement, raw materials can be partially substituted by regenerable waste provided from glasses, construction and demolition waste in order to reduce the environmental problem and burden of landfills. In this study, limestone–silicate composites were synthesized using starting materials such [...] Read more.
In the production of cement, raw materials can be partially substituted by regenerable waste provided from glasses, construction and demolition waste in order to reduce the environmental problem and burden of landfills. In this study, limestone–silicate composites were synthesized using starting materials such as glass waste and lime, brick, autoclaved aerated concrete (ACC), mortar or plaster waste. The structure and mechanical properties of the nano-composite materials have been studied. The mean CaCO3 crystallite sizes are higher for composites containing ACC and brick than for doping with lime, mortar and plaster. Cement-based materials are formed by replacing 2.5% of the Portland cement with limestone–silicate composites. The results indicate new possibilities for introducing 2.5%of composites in cement paste because they promote the formation of the C-S-H network, which provides strength and long stability for the cement paste. The influence of varied types of mix composites in the expired cement on the initial cracking strain and stress, tensile strength and compressive strength were investigated. The compressive strength values of composite-expired cement specimens are situated between 11.8 and 15.7 MPa, respectively, which reflect an increase from 22.9 up to 63.54% over the compressive strength of expired cement matrix. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

12 pages, 3649 KiB  
Article
Novel High-Entropy FeCoNiMoZn-Layered Hydroxide as an Efficient Electrocatalyst for the Oxygen Evolution Reaction
by Zhihao Cheng, Xin Han, Liying Han, Jinfeng Zhang, Jie Liu, Zhong Wu and Cheng Zhong
Nanomaterials 2024, 14(10), 889; https://doi.org/10.3390/nano14100889 - 20 May 2024
Viewed by 355
Abstract
The exploration of catalysts for the oxygen evolution reaction (OER) with high activity and acceptable price is essential for water splitting to hydrogen generation. High-entropy materials (HEMs) have aroused increasing interest in the field of electrocatalysis due to their unusual physicochemical properties. In [...] Read more.
The exploration of catalysts for the oxygen evolution reaction (OER) with high activity and acceptable price is essential for water splitting to hydrogen generation. High-entropy materials (HEMs) have aroused increasing interest in the field of electrocatalysis due to their unusual physicochemical properties. In this work, we reported a novel FeCoNiMoZn-OH high entropy hydroxide (HEH)/nickel foam (NF) synthesized by a facile pulsed electrochemical deposition method at room temperature. The FeCoNiMoZn-OH HEH displays a 3D porous nanosheet morphology and polycrystalline structure, which exhibits extraordinary OER activity in alkaline media, including much lower overpotential (248 mV at 10 mA cm−2) and Tafel slope (30 mV dec−1). Furthermore, FeCoNiMoZn-OH HEH demonstrates excellent OER catalytic stability. The enhanced catalytic performance of the FeCoNiMoZn-OH HEH primarily contributed to the porous morphology and the positive synergistic effect between Mo and Zn. This work provides a novel insight into the design of HEMs in catalytic application. Full article
(This article belongs to the Topic Porous Materials for Energy and Environment Applications)
Show Figures

Figure 1

10 pages, 2281 KiB  
Article
Field-Emission Energy Distribution of Carbon Nanotube Film and Single Tube under High Current
by Lizhou Wang, Yiting Wu, Jun Jiang, Shuai Tang, Yanlin Ke, Yu Zhang and Shaozhi Deng
Nanomaterials 2024, 14(10), 888; https://doi.org/10.3390/nano14100888 - 20 May 2024
Viewed by 315
Abstract
A narrow energy distribution is a prominent characteristic of field-emission cold cathodes. When applied in a vacuum electronic device, the cold cathode is fabricated over a large area and works under a high current and current density. It is interesting to see the [...] Read more.
A narrow energy distribution is a prominent characteristic of field-emission cold cathodes. When applied in a vacuum electronic device, the cold cathode is fabricated over a large area and works under a high current and current density. It is interesting to see the energy distribution of the field emitter under such a working situation. In this work, the energy distribution spectra of a single carbon nanotube (CNT) and a CNT film were investigated across a range of currents, spanning from low to high. A consistent result indicated that, at low current emission, the CNT film (area: 0.585 mm2) exhibited a narrow electron energy distribution as small as 0.5 eV, similar to that of a single CNT, while the energy distribution broadened with increased current and voltage, accompanied by a peak position shift. The influencing factors related to the electric field, Joule heating, Coulomb interaction, and emission site over a large area were discussed to elucidate the underlying mechanism. The results provide guidance for the electron source application of nano-materials in cold cathode devices. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

12 pages, 6228 KiB  
Article
Construction of Monolayer Ti3C2Tx MXene on Nickel Foam under High Electrostatic Fields for High-Performance Supercapacitors
by Liyong Zhang, Jijie Chen, Guangzhi Wei, Han Li, Guanbo Wang, Tongjie Li, Juan Wang, Yehu Jiang, Le Bao and Yongxing Zhang
Nanomaterials 2024, 14(10), 887; https://doi.org/10.3390/nano14100887 - 19 May 2024
Viewed by 428
Abstract
Ti3C2Tx MXene, as a common two-dimensional material, has a wide range of applications in electrochemical energy storage. However, the surface forces of few-layer or monolayer Ti3C2Tx MXene lead to easy agglomeration, which hinders [...] Read more.
Ti3C2Tx MXene, as a common two-dimensional material, has a wide range of applications in electrochemical energy storage. However, the surface forces of few-layer or monolayer Ti3C2Tx MXene lead to easy agglomeration, which hinders the demonstration of its performance due to the characteristics of layered materials. Herein, we report a facile method for preparing monolayer Ti3C2Tx MXene on nickel foam to achieve a self-supporting structure for supercapacitor electrodes under high electrostatic fields. Moreover, the specific capacitance varies with the deposition of different-concentration monolayer Ti3C2Tx MXene on nickel foam. As a result, Ti3C2Tx/NF has a high specific capacitance of 319 mF cm−2 at 2 mA cm−2 and an excellent long-term cycling stability of 94.4% after 7000 cycles. It was observed that the areal specific capacitance increases, whereas the mass specific capacitance decreases with the increasing loading mass. Attributable to the effect of the high electrostatic field, the self-supporting structure of the Ti3C2Tx/NF becomes denser as the concentration of the monolayer Ti3C2Tx MXene ink increases, ultimately affecting its electrochemical performance. This work provides a simple way to overcome the agglomeration problem of few-layer or monolayer MXene, then form a self-supporting electrode exhibiting excellent electrochemical performance. Full article
(This article belongs to the Special Issue Nanomaterials for Supercapacitors)
Show Figures

Figure 1

14 pages, 2592 KiB  
Review
Recent Advances in the Photonic Curing of the Hole Transport Layer, the Electron Transport Layer, and the Perovskite Layers to Improve the Performance of Perovskite Solar Cells
by Moulay Ahmed Slimani, Sylvain G. Cloutier and Ricardo Izquierdo
Nanomaterials 2024, 14(10), 886; https://doi.org/10.3390/nano14100886 - 19 May 2024
Viewed by 370
Abstract
Perovskite solar cells (PSCs) have attracted increasing research interest, but their performance depends on both the choice of materials and the process used. The materials can typically be treated in solution, which makes them well suited for roll-to-roll processing methods, but their deposition [...] Read more.
Perovskite solar cells (PSCs) have attracted increasing research interest, but their performance depends on both the choice of materials and the process used. The materials can typically be treated in solution, which makes them well suited for roll-to-roll processing methods, but their deposition under ambient conditions requires overcoming some challenges to improve stability and efficiency. In this review, we highlight the latest advancements in photonic curing (PC) for perovskite materials, as well as for hole transport layer (HTL) and electron transport layer (ETL) materials. We present how PC parameters can be used to control the optical, electrical, morphological, and structural properties of perovskite HTL and ETL layers. Emphasizing the significance of these advancements for perovskite solar cells could further highlight the importance of this research and underline its essential role in creating more efficient and sustainable solar technology. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications)
Show Figures

Figure 1

11 pages, 7844 KiB  
Article
Tailored Triggering of High-Quality Multi-Dimensional Coupled Topological States in Valley Photonic Crystals
by Guangxu Su, Jiangle He, Xiaofei Ye, Hengming Yao, Yaxuan Li, Junzheng Hu, Minghui Lu, Peng Zhan and Fanxin Liu
Nanomaterials 2024, 14(10), 885; https://doi.org/10.3390/nano14100885 - 19 May 2024
Viewed by 430
Abstract
The combination of higher-order topological insulators and valley photonic crystals has recently aroused extensive attentions due to the great potential in flexible and efficient optical field manipulations. Here, we computationally propose a photonic device for the 1550 nm communication band, in which the [...] Read more.
The combination of higher-order topological insulators and valley photonic crystals has recently aroused extensive attentions due to the great potential in flexible and efficient optical field manipulations. Here, we computationally propose a photonic device for the 1550 nm communication band, in which the topologically protected electromagnetic modes with high quality can be selectively triggered and modulated on demand. Through introducing two valley photonic crystal units without any structural alteration, we successfully achieve multi-dimensional coupled topological states thanks to the diverse electromagnetic characteristics of two valley edge states. According to the simulations, the constructed topological photonic devices can realize Fano lines on the spectrum and show high-quality localized modes by tuning the coupling strength between the zero-dimensional valley corner states and the one-dimensional valley edge states. Furthermore, we extend the valley-locked properties of edge states to higher-order valley topological insulators, where the selected corner states can be directionally excited by chiral source. More interestingly, we find that the modulation of multi-dimensional coupled photonic topological states with pseudospin dependence become more efficient compared with those uncoupled modes. This work presents a valuable approach for multi-dimensional optical field manipulation, which may support potential applications in on-chip integrated nanophotonic devices. Full article
(This article belongs to the Special Issue Photofunctional Nanomaterials and Nanostructures)
Show Figures

Graphical abstract

11 pages, 2530 KiB  
Article
Direct Selective Epitaxy of 2D Sb2Te3 onto Monolayer WS2 for Vertical p–n Heterojunction Photodetectors
by Baojun Pan, Zhenjun Dou, Mingming Su, Ya Li, Jialing Wu, Wanwan Chang, Peijian Wang, Lijie Zhang, Lei Zhao, Mei Zhao and Sui-Dong Wang
Nanomaterials 2024, 14(10), 884; https://doi.org/10.3390/nano14100884 - 19 May 2024
Viewed by 471
Abstract
Two-dimensional transition metal dichalcogenides (2D-TMDs) possess appropriate bandgaps and interact via van der Waals (vdW) forces between layers, effectively overcoming lattice compatibility challenges inherent in traditional heterojunctions. This property facilitates the creation of heterojunctions with customizable bandgap alignments. However, the prevailing method for [...] Read more.
Two-dimensional transition metal dichalcogenides (2D-TMDs) possess appropriate bandgaps and interact via van der Waals (vdW) forces between layers, effectively overcoming lattice compatibility challenges inherent in traditional heterojunctions. This property facilitates the creation of heterojunctions with customizable bandgap alignments. However, the prevailing method for creating heterojunctions with 2D-TMDs relies on the low-efficiency technique of mechanical exfoliation. Sb2Te3, recognized as a notable p-type semiconductor, emerges as a versatile component for constructing diverse vertical p–n heterostructures with 2D-TMDs. This study presents the successful large-scale deposition of 2D Sb2Te3 onto inert mica substrates, providing valuable insights into the integration of Sb2Te3 with 2D-TMDs to form heterostructures. Building upon this initial advancement, a precise epitaxial growth method for Sb2Te3 on pre-existing WS2 surfaces on SiO2/Si substrates is achieved through a two-step chemical vapor deposition process, resulting in the formation of Sb2Te3/WS2 heterojunctions. Finally, the development of 2D Sb2Te3/WS2 optoelectronic devices is accomplished, showing rapid response times, with a rise/decay time of 305 μs/503 μs, respectively. Full article
Show Figures

Figure 1

10 pages, 3528 KiB  
Article
A Terahertz Metasurface Sensor Based on Quasi-BIC for Detection of Additives in Infant Formula
by Mingjun Sun, Jie Lin, Ying Xue, Weijin Wang, Shengnan Shi, Shan Zhang and Yanpeng Shi
Nanomaterials 2024, 14(10), 883; https://doi.org/10.3390/nano14100883 - 19 May 2024
Viewed by 412
Abstract
Prohibited additives in infant formula severely affect the health of infants. Terahertz (THz) spectroscopy has enormous application potential in analyte detection due to its rich fingerprint information content. However, there is limited research on the mixtures of multiple analytes. In this study, we [...] Read more.
Prohibited additives in infant formula severely affect the health of infants. Terahertz (THz) spectroscopy has enormous application potential in analyte detection due to its rich fingerprint information content. However, there is limited research on the mixtures of multiple analytes. In this study, we propose a split ring metasurface that supports magnetic dipole bound states in the continuum (BIC). By breaking the symmetry, quasi-BIC with a high quality (Q) factor can be generated. Utilizing an angle-scanning strategy, the frequency of the resonance dip can be shifted, resulting in the plotting of an envelope curve which can reflect the molecular fingerprint of the analytes. Two prohibited additives found in infant formula, melamine and vanillin, can be identified in different proportions. Furthermore, a metric similar to the resolution in chromatographic analysis is introduced and calculated to be 0.61, indicating that these two additives can be detected simultaneously. Our research provides a new solution for detecting additives in infant formula. Full article
(This article belongs to the Special Issue Nanomaterials for Terahertz Technology Applications)
Show Figures

Figure 1

10 pages, 3590 KiB  
Article
Glass Ceramic Fibers Containing PbS Quantum Dots for Fluorescent Temperature Sensing
by Tingyu Zha, Penghui Zhang, Xilong Jin, Yi Long, Taoyun Huang, Hong Jia, Zaijin Fang and Bai-Ou Guan
Nanomaterials 2024, 14(10), 882; https://doi.org/10.3390/nano14100882 - 19 May 2024
Viewed by 319
Abstract
Glass ceramics (GCs) containing PbS quantum dots (QDs) are prepared for temperature sensing. Broadband emissions are detected in the GCs when PbS QDs are precipitated from the glasses, and emissions centers are modulated from 1250 nm to 1960 nm via heat treatments. The [...] Read more.
Glass ceramics (GCs) containing PbS quantum dots (QDs) are prepared for temperature sensing. Broadband emissions are detected in the GCs when PbS QDs are precipitated from the glasses, and emissions centers are modulated from 1250 nm to 1960 nm via heat treatments. The emission centers of GCs exhibit blue-shifts when environment temperatures increase from room temperature to 210 °C. Importantly, the shift values of emission centers increase linearly with the test temperature, which is beneficial for applications in temperature sensing. A temperature sensor based on PbS QDs GC is heat-treated at 500 °C for 10 h, possesses the highest sensitivity of 0.378 nm/°C, and exhibits excellent stability and repeatability at high temperatures (up to 210 °C). Moreover, GC fibers are fabricated by using the GCs as the fiber core. The sensitivity of the temperature-sensing sensor of the GC fibers is also demonstrated and the sensitivity is as high as 0.558 nm/°C. The designed PbS QDs GCs provide a significant materials base for the manufacturing of fluorescent temperature sensors and the GC fibers offer significant opportunities for temperature detection in complex, integrated and compact devices. Full article
Show Figures

Figure 1

18 pages, 6598 KiB  
Article
Investigations of In2O3 Added SiC Semiconductive Thin Films and Manufacture of a Heterojunction Diode
by Chia-Te Liao, Chia-Yang Kao, Zhi-Ting Su, Yu-Shan Lin, Yi-Wen Wang and Cheng-Fu Yang
Nanomaterials 2024, 14(10), 881; https://doi.org/10.3390/nano14100881 - 19 May 2024
Viewed by 274
Abstract
This study involved direct doping of In2O3 into silicon carbide (SiC) powder, resulting in 8.0 at% In-doped SiC powder. Subsequently, heating at 500 °C was performed to form a target, followed by the utilization of electron beam (e-beam) technology to [...] Read more.
This study involved direct doping of In2O3 into silicon carbide (SiC) powder, resulting in 8.0 at% In-doped SiC powder. Subsequently, heating at 500 °C was performed to form a target, followed by the utilization of electron beam (e-beam) technology to deposit the In-doped SiC thin films with the thickness of approximately 189.8 nm. The first breakthrough of this research was the successful deposition of using e-beam technology. The second breakthrough involved utilizing various tools to analyze the physical and electrical properties of In-doped SiC thin films. Hall effect measurement was used to measure the resistivity, mobility, and carrier concentration and confirm its n-type semiconductor nature. The uniform dispersion of In ions in SiC was as confirmed by electron microscopy energy-dispersive spectroscopy and secondary ion mass spectrometry analyses. The Tauc Plot method was employed to determine the Eg values of pure SiC and In-doped SiC thin films. Semiconductor parameter analyzer was used to measure the conductivity and the I-V characteristics of devices in In-doped SiC thin films. Furthermore, the third finding demonstrated that In2O3-doped SiC thin films exhibited remarkable current density. X-ray photoelectron spectroscopy and Gaussian-resolved spectra further confirmed a significant relationship between conductivity and oxygen vacancy concentration. Lastly, depositing these In-doped SiC thin films onto p-type silicon substrates etched with buffered oxide etchant resulted in the formation of heterojunction p-n junction. This junction exhibited the rectifying characteristics of a diode, with sample current values in the vicinity of 102 mA, breakdown voltage at approximately −5.23 V, and open-circuit voltage around 1.56 V. This underscores the potential of In-doped SiC thin films for various semiconductor devices. Full article
(This article belongs to the Special Issue Advances in Wide-Bandgap Semiconductor Nanomaterials)
Show Figures

Figure 1

12 pages, 3380 KiB  
Article
Hectorite/Phenanthroline-Based Nanomaterial as Fluorescent Sensor for Zn Ion Detection: A Theoretical and Experimental Study
by Marina Massaro, Ana Borrego-Sánchez, César Viseras-Iborra, Giuseppe Cinà, Fátima García-Villén, Leonarda F. Liotta, Alberto Lopez Galindo, Carlos Pimentel, Claro Ignacio Sainz-Díaz, Rita Sánchez-Espejo and Serena Riela
Nanomaterials 2024, 14(10), 880; https://doi.org/10.3390/nano14100880 - 19 May 2024
Viewed by 310
Abstract
The development of fluorescent materials that can act as sensors for the determination of metal ions in biological fluids is important since they show, among others, high sensitivity and specificity. However, most of the molecules that are used for these purposes possess a [...] Read more.
The development of fluorescent materials that can act as sensors for the determination of metal ions in biological fluids is important since they show, among others, high sensitivity and specificity. However, most of the molecules that are used for these purposes possess a very low solubility in aqueous media, and, thus, it is necessary to adopt some derivation strategies. Clay minerals, for example, hectorite, as natural materials, are biocompatible and available in large amounts at a very low cost that have been extensively used as carrier systems for the delivery of different hydrophobic species. In the present work, we report the synthesis and characterization of a hectorite/phenanthroline nanomaterial as a potential fluorescent sensor for Zn ion detection in water. The interaction of phenanthroline with the Ht interlaminar space was thoroughly investigated, via both theoretical and experimental studies (i.e., thermogravimetry, FT-IR, UV-vis and fluorescence spectroscopies and XRD measurements), while its morphology was imaged by scanning electron microscopy. Afterwards, the possibility to use it as sensor for the detection of Zn2+ ions, in comparison to other metal ions, was investigated through fluorescent measurements, and the stability of the solid Ht/Phe/Zn complex was assessed by different experimental and theoretical measurements. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

10 pages, 2808 KiB  
Article
Controlling Thermoelectric Properties of Laser-Induced Graphene on Polyimide
by Cem Kincal and Nuri Solak
Nanomaterials 2024, 14(10), 879; https://doi.org/10.3390/nano14100879 - 19 May 2024
Viewed by 395
Abstract
In the field of wearable thermoelectric generators, graphene-based materials have attracted attention as suitable candidates due to their low material costs and tunable electronic properties. However, their high thermal conductivity poses significant challenges. Low thermal conductivity due to porous structure of the laser-induced [...] Read more.
In the field of wearable thermoelectric generators, graphene-based materials have attracted attention as suitable candidates due to their low material costs and tunable electronic properties. However, their high thermal conductivity poses significant challenges. Low thermal conductivity due to porous structure of the laser-induced graphene, combined with its affordability and scalability, positions it as a promising candidate for thermoelectric applications. In this study, thermoelectric properties of the laser-induced graphene (LIG) on polyimide and their dependence on structural modifications of LIG were investigated. Furthermore, it was shown that increasing the laser scribing power on polyimide results in larger graphene flakes and a higher degree of graphitization. Electrical conductivity measurements indicated an increase with increasing laser power, due to a higher degree of graphitization, which enhances charge carrier mobility. Our findings reveal that LIG exhibits p-type semiconducting behavior, characterized by a positive Seebeck coefficient. It was shown that increasing laser power increased the Seebeck coefficient and electrical conductivity simultaneously, which is attributed to a charge carrier energy filtering effect arising from structures occurred on the graphene flakes. Moreover, the porous structure of LIG contributes to its relatively low thermal conductivity, ranging between 0.6 W/m·K and 0.85 W/m·K, which enhances the thermoelectric performance of LIG. It has been observed that with increasing laser power, the figure of merit for laser-induced graphene can be enhanced by nearly 10 times, which holds promising applications for laser-induced graphene due to the tunability of its thermoelectric performance by changing laser parameters. Full article
(This article belongs to the Special Issue 2D and Carbon Nanomaterials for Energy Conversion and Storage)
Show Figures

Figure 1

8 pages, 3304 KiB  
Article
Novel Highly Efficient Buried Gratings for Selective Coupling of SPP Waves onto Single Interfaces
by Arif Nabizada, Hamed Tari, Alessandro Bile and Eugenio Fazio
Nanomaterials 2024, 14(10), 878; https://doi.org/10.3390/nano14100878 - 18 May 2024
Viewed by 370
Abstract
Diffraction gratings have always been used to effectively couple optical radiation within integrated waveguides. This is also valid for plasmonic structures that support Surface Plasmon Polariton (SPP) waves. Traditional gratings usually excite SPP waves at the interface where they are located or, for [...] Read more.
Diffraction gratings have always been used to effectively couple optical radiation within integrated waveguides. This is also valid for plasmonic structures that support Surface Plasmon Polariton (SPP) waves. Traditional gratings usually excite SPP waves at the interface where they are located or, for thin metal nanostrips, at both interfaces. But reducing the thickness of the metal layer in the presence of a grating has the handicap of increasing the tunnelling of light towards the substrate, which means higher losses and reduced coupling efficiency. In this paper, we design and optimize novel gratings buried within the metallic thin films for selective coupling of SPP waves onto individual interfaces. Compared with traditional superficial gratings, the novel buried ones demonstrate higher efficiency and much lower residual tunnelling of light through the coupling structures. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

24 pages, 3356 KiB  
Article
Bioaccessibility of Metallic Nickel and Nickel Oxide Nanoparticles in Four Simulated Biological Fluids
by Tara Lyons-Darden, Katherine E. Heim, Li Han, Laura Haines, Christie M. Sayes and Adriana R. Oller
Nanomaterials 2024, 14(10), 877; https://doi.org/10.3390/nano14100877 - 17 May 2024
Viewed by 373
Abstract
Bioaccessibility of metals from substances and alloys is increasingly used as part of the assessment to predict potential toxicity. However, data are sparse on the metal bioaccessibility from nanoparticle (NP) size metal substances. This study examines nickel ion release from metallic nickel and [...] Read more.
Bioaccessibility of metals from substances and alloys is increasingly used as part of the assessment to predict potential toxicity. However, data are sparse on the metal bioaccessibility from nanoparticle (NP) size metal substances. This study examines nickel ion release from metallic nickel and nickel oxide micron particles (MPs) and NPs in simulated biological fluids at various timepoints including those relevant for specific routes of exposure. The results suggest that MPs of both metallic nickel and nickel oxide generally released more nickel ions in acidic simulated biological fluids (gastric and lysosomal) than NPs of the same substance, with the largest differences being for nickel oxide. In more neutral pH fluids (interstitial and perspiration), nickel metal NPs released more nickel ions than MPs, with nickel oxide results showing a higher release for MPs in interstitial fluid yet a lower release in perspiration fluid. Various experimental factors related to the particle, fluid, and extraction duration were identified that can have an impact on the particle dissolution and release of nickel ions. Overall, the results suggest that based on nickel release alone, nickel NPs are not inherently more hazardous than nickel MPs. Moreover, analyses should be performed on a case-by-case basis with consideration of various experimental factors and correlation with in vivo data. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

10 pages, 2863 KiB  
Article
Solvothermal Fabrication of Mesoporous Pd Nano-Corals at Mild Temperature for Alkaline Hydrogen Evolution Reaction
by Ming Zhao, Koh-ichi Maruyama and Satoshi Tanaka
Nanomaterials 2024, 14(10), 876; https://doi.org/10.3390/nano14100876 - 17 May 2024
Viewed by 331
Abstract
Porous metallic nanomaterials exhibit interesting physical and chemical properties, and are widely used in various fields. Traditional fabrication techniques are limited to metallurgy, sintering, electrodeposition, etc., which limit the control of pore size and distribution, and make it difficult to achieve materials with [...] Read more.
Porous metallic nanomaterials exhibit interesting physical and chemical properties, and are widely used in various fields. Traditional fabrication techniques are limited to metallurgy, sintering, electrodeposition, etc., which limit the control of pore size and distribution, and make it difficult to achieve materials with high surface areas. On the other hand, the chemical preparation of metallic nanoparticles is usually carried out with strong reducing agents or at high temperature, resulting in the formation of dispersed particles which cannot evolve into porous metal. In this study, we reported the simple fabrication of coral-like mesoporous Pd nanomaterial (Pd NC) with a ligament size of 4.1 nm. The fabrication was carried out by simple solvothermal reduction at a mild temperature of 135 °C, without using any templates. The control experiments suggested that tetrabutylammonium bromide (TBAB) played a critical role in the Pd(II) reduction into Pd nanoclusters and their subsequent aggregation to form Pd NC, and another key point for the formation of Pd NC is not to use a strong reducing agent. In alkaline water electrolysis, the Pd NC outperforms the monodisperse Pd NPs and the state-of-the-art Pt (under large potentials) for H2 evolution reaction, probably due to its mesoporous structure and large surface area. This work reports a simple and novel method for producing porous metallic nanomaterials with a high utilization efficiency of metal atoms, and it is expected to contribute to the practical preparation of porous metallic nanomaterials by solvothermal reductions. Full article
Show Figures

Figure 1

10 pages, 1577 KiB  
Article
Raman Scattering Enhancement through Pseudo-Cavity Modes
by Vincenzo Caligiuri, Antonello Nucera, Aniket Patra, Marco Castriota and Antonio De Luca
Nanomaterials 2024, 14(10), 875; https://doi.org/10.3390/nano14100875 - 17 May 2024
Viewed by 414
Abstract
Raman spectroscopy plays a pivotal role in spectroscopic investigations. The small Raman scattering cross-section of numerous analytes, however, requires enhancement of the signal through specific structuring of the electromagnetic and morphological properties of the underlying surface. This enhancement technique is known as surface-enhanced [...] Read more.
Raman spectroscopy plays a pivotal role in spectroscopic investigations. The small Raman scattering cross-section of numerous analytes, however, requires enhancement of the signal through specific structuring of the electromagnetic and morphological properties of the underlying surface. This enhancement technique is known as surface-enhanced Raman spectroscopy (SERS). Despite the existence of various proposed alternatives, the approach involving Fabry–Pérot cavities, which constitutes a straightforward method to enhance the electromagnetic field around the analyte, has not been extensively utilized. This is because, for the analyte to experience the maximum electric field, it needs to be embedded within the cavity. Consequently, the top mirror of the cavity will eventually shield it from the external laser source. Recently, an open-cavity configuration has been demonstrated to exhibit properties similar to the classic Fabry–Pérot configuration, with the added advantage of maintaining direct accessibility for the laser source. This paper showcases how such a simple yet innovative configuration can be effectively utilized to achieve remarkable Raman enhancement. The simple structure, coupled with its inexpensive nature and versatility in material selection and scalability, makes it an ideal choice for various analytes and integration into diverse Raman apparatus setups. Full article
(This article belongs to the Special Issue Recent Research on Nanophotonics and Nanoscale Quantum Optics)
Show Figures

Figure 1

10 pages, 5504 KiB  
Article
Magnetic-Dielectric Cantilevers for Atomic Force Microscopy
by Gala Sanchez-Seguame, Hugo Avalos-Sanchez, Jesus Eduardo Lugo, Eduardo Antonio Murillo-Bracamontes, Martha Alicia Palomino-Ovando, Orlando Hernández-Cristobal, José Juan Gervacio-Arciniega and Miller Toledo-Solano
Nanomaterials 2024, 14(10), 874; https://doi.org/10.3390/nano14100874 - 17 May 2024
Viewed by 993
Abstract
Atomic force microscopy (AFM) is a technique that relies on detecting forces at the nanonewton scale. It involves using a cantilever with a tiny tip at one end. This tip interacts with the short- and long-range forces of material surfaces. These cantilevers are [...] Read more.
Atomic force microscopy (AFM) is a technique that relies on detecting forces at the nanonewton scale. It involves using a cantilever with a tiny tip at one end. This tip interacts with the short- and long-range forces of material surfaces. These cantilevers are typically manufactured with Si or Si3N4 and synthesized using a lithography technique, which implies a high cost. On the other hand, through simple chemical methods, it is possible to synthesize a magneto-dielectric composite made up of artificial SiO2 opals infiltrated with superparamagnetic nanoparticles of Fe3O4. From these materials, it is possible to obtain tipless cantilevers that can be used in AFM analysis. Tipless cantilevers are an alternative tool in nanoscale exploration, offering a versatile approach to surface analysis. Unlike traditional AFM probes, tipless versions eliminate the challenges associated with tip wear, ensuring prolonged stability during measurements. This makes tipless AFM particularly valuable for imaging delicate or soft samples, as it prevents sample damage and provides precise measurements of topography and mechanical and electromechanical properties. This study presents the results of the characterization of known surfaces using magneto-dielectric cantilevers and commercial cantilevers based on Si. The characterization will be carried out through contact and non-contact topography measurements. Full article
Show Figures

Figure 1

25 pages, 6718 KiB  
Article
Edge-Terminated AlGaN/GaN/AlGaN Multi-Quantum Well Impact Avalanche Transit Time Sources for Terahertz Wave Generation
by Monisha Ghosh, Shilpi Bhattacharya Deb, Aritra Acharyya, Arindam Biswas, Hiroshi Inokawa, Hiroaki Satoh, Amit Banerjee, Alexey Y. Seteikin and Ilia G. Samusev
Nanomaterials 2024, 14(10), 873; https://doi.org/10.3390/nano14100873 - 17 May 2024
Viewed by 529
Abstract
In our pursuit of high-power terahertz (THz) wave generation, we propose innovative edge-terminated single-drift region (SDR) multi-quantum well (MQW) impact avalanche transit time (IMPATT) structures based on the AlxGa1−xN/GaN/AlxGa1−xN material system, with a [...] Read more.
In our pursuit of high-power terahertz (THz) wave generation, we propose innovative edge-terminated single-drift region (SDR) multi-quantum well (MQW) impact avalanche transit time (IMPATT) structures based on the AlxGa1−xN/GaN/AlxGa1−xN material system, with a fixed aluminum mole fraction of x = 0.3. Two distinct MQW diode configurations, namely p+-n junction-based and Schottky barrier diode structures, were investigated for their THz potential. To enhance reverse breakdown characteristics, we propose employing mesa etching and nitrogen ion implantation for edge termination, mitigating issues related to premature and soft breakdown. The THz performance is comprehensively evaluated through steady-state and high-frequency characterizations using a self-consistent quantum drift-diffusion (SCQDD) model. Our proposed Al0.3Ga0.7N/GaN/Al0.3Ga0.7N MQW diodes, as well as GaN-based single-drift region (SDR) and 3C-SiC/Si/3C-SiC MQW-based double-drift region (DDR) IMPATT diodes, are simulated. The Schottky barrier in the proposed diodes significantly reduces device series resistance, enhancing peak continuous wave power output to approximately 300 mW and DC to THz conversion efficiency to nearly 13% at 1.0 THz. Noise performance analysis reveals that MQW structures within the avalanche zone mitigate noise and improve overall performance. Benchmarking against state-of-the-art THz sources establishes the superiority of our proposed THz sources, highlighting their potential for advancing THz technology and its applications. Full article
(This article belongs to the Special Issue Nanomaterials for Terahertz Technology Applications)
Show Figures

Figure 1

14 pages, 7529 KiB  
Article
Direct Imaging of Radiation-Sensitive Organic Polymer-Based Nanocrystals at Sub-Ångström Resolution
by Elvio Carlino, Antonietta Taurino, Dritan Hasa, Dejan-Krešimir Bučar, Maurizio Polentarutti, Lidia E. Chinchilla and Josè J. Calvino Gamez
Nanomaterials 2024, 14(10), 872; https://doi.org/10.3390/nano14100872 - 17 May 2024
Viewed by 465
Abstract
Seeing the atomic configuration of single organic nanoparticles at a sub-Å spatial resolution by transmission electron microscopy has been so far prevented by the high sensitivity of soft matter to radiation damage. This difficulty is related to the need to irradiate the particle [...] Read more.
Seeing the atomic configuration of single organic nanoparticles at a sub-Å spatial resolution by transmission electron microscopy has been so far prevented by the high sensitivity of soft matter to radiation damage. This difficulty is related to the need to irradiate the particle with a total dose of a few electrons/Å2, not compatible with the electron beam density necessary to search the low-contrast nanoparticle, to control its drift, finely adjust the electron-optical conditions and particle orientation, and finally acquire an effective atomic-resolution image. On the other hand, the capability to study individual pristine nanoparticles, such as proteins, active pharmaceutical ingredients, and polymers, with peculiar sensitivity to the variation in the local structure, defects, and strain, would provide advancements in many fields, including materials science, medicine, biology, and pharmacology. Here, we report the direct sub-ångström-resolution imaging at room temperature of pristine unstained crystalline polymer-based nanoparticles. This result is obtained by combining low-dose in-line electron holography and phase-contrast imaging on state-of-the-art equipment, providing an effective tool for the quantitative sub-ångström imaging of soft matter. Full article
(This article belongs to the Special Issue Transmission Electron Microscopy for Nanomaterials Research Advances)
Show Figures

Graphical abstract

12 pages, 3508 KiB  
Article
Upconversion Emission and Dual-Mode Sensing Characteristics of NaYF4:Yb3+/Er3+ Microcrystals at High and Ultralow Temperatures
by Xinyi Xu, Zhaojin Wang, Jin Hou, Tian Zhang, Xin Zhao, Siyi Di and Zijie Li
Nanomaterials 2024, 14(10), 871; https://doi.org/10.3390/nano14100871 - 17 May 2024
Viewed by 344
Abstract
In this study, we investigate micrometer-sized NaYF4 crystals double-doped with Yb3+/Er3+ lanthanide ions, designed for temperature-sensing applications. In contrast to previous studies, which focused predominantly on the high-temperature regime, our investigation spans a comprehensive range of both high and [...] Read more.
In this study, we investigate micrometer-sized NaYF4 crystals double-doped with Yb3+/Er3+ lanthanide ions, designed for temperature-sensing applications. In contrast to previous studies, which focused predominantly on the high-temperature regime, our investigation spans a comprehensive range of both high and ultralow temperatures. We explore the relationship between temperature and the upconversion luminescence (UCL) spectra in both frequency and time domains. Our findings highlight the strong dependence of these spectral characteristics of lanthanide-doped NaYF4 crystals on temperature. Furthermore, we introduce a dual-mode luminescence temperature measurement technique, leveraging the upconversion emission intensity ratio for both green and red emissions. This study also examines the correlation between temperature sensing, energy level disparities, and thermal coupling in Er3+ ions across various temperature scales. Our research contributes to advancing the understanding and application of lanthanide-doped materials, setting a foundation for future innovations in temperature sensing across diverse fields. Full article
Show Figures

Figure 1

10 pages, 4167 KiB  
Article
Effect of Post-Implantation Heat Treatment Conditions on Photoluminescent Properties of Ion-Synthesized Gallium Oxide Nanocrystals
by Dmitry S. Korolev, Kristina S. Matyunina, Alena A. Nikolskaya, Alexey I. Belov, Alexey N. Mikhaylov, Artem A. Sushkov, Dmitry A. Pavlov and David I. Tetelbaum
Nanomaterials 2024, 14(10), 870; https://doi.org/10.3390/nano14100870 - 17 May 2024
Viewed by 344
Abstract
A novel and promising way for creating nanomaterials based on gallium oxide is the ion synthesis of Ga2O3 nanocrystals in a SiO2/Si dielectric matrix. The properties of nanocrystals are determined by the conditions of ion synthesis—the parameters of [...] Read more.
A novel and promising way for creating nanomaterials based on gallium oxide is the ion synthesis of Ga2O3 nanocrystals in a SiO2/Si dielectric matrix. The properties of nanocrystals are determined by the conditions of ion synthesis—the parameters of ion irradiation and post-implantation heat treatment. In this work, the light-emitting properties of Ga2O3 nanocrystals were studied depending on the temperature and annealing atmosphere. It was found that annealing at a temperature of 900 °C leads to the appearance of intense luminescence with a maximum at ~480 nm caused by the recombination of donor–acceptor pairs. An increase in luminescence intensity upon annealing in an oxidizing atmosphere is shown. Based on data from photoluminescence excitation spectroscopy and high-resolution transmission electron microscopy, a hypothesis about the possibility of the participation of a quantum-size effect during radiative recombination is proposed. A mechanism for the formation of Ga2O3 nanocrystals during ion synthesis is suggested, which makes it possible to describe the change in the luminescent properties of the synthesized samples with varying conditions of post-implantation heat treatment. Full article
(This article belongs to the Special Issue Advances in Wide-Bandgap Semiconductor Nanomaterials)
Show Figures

Figure 1

13 pages, 3328 KiB  
Article
Enhanced Thermal Stability of Carbonyl Iron Nanocrystalline Microwave Absorbents by Pinning Grain Boundaries with SiBaFe Alloy Nanoparticles
by Yifan Xu, Zhihong Chen, Ziwen Fu, Yuchen Hu, Yunhao Luo, Wei Li and Jianguo Guan
Nanomaterials 2024, 14(10), 869; https://doi.org/10.3390/nano14100869 - 16 May 2024
Viewed by 402
Abstract
Nanocrystalline carbonyl iron (CI) particles are promising microwave absorbents at elevated temperature, whereas their excessive grain boundary energy leads to the growth of nanograins and a deterioration in permeability. In this work, we report a strategy to enhance the thermal stability of the [...] Read more.
Nanocrystalline carbonyl iron (CI) particles are promising microwave absorbents at elevated temperature, whereas their excessive grain boundary energy leads to the growth of nanograins and a deterioration in permeability. In this work, we report a strategy to enhance the thermal stability of the grains and microwave absorption of CI particles by doping a SiBaFe alloy. Grain growth was effectively inhibited by the pinning effect of SiBaFe alloy nanoparticles at the grain boundaries. After heat treatment at 600 °C, the grain size of CI particles increased from ~10 nm to 85.1 nm, while that of CI/SiBaFe particles was only 32.0 nm; with the temperature rising to 700 °C, the grain size of CI particles sharply increased to 158.1 nm, while that of CI/SiBaFe particles was only 40.8 nm. Excellent stability in saturation magnetization and microwave absorption was also achieved in CI/SiBaFe particles. After heat treatment at 600 °C, the flaky CI/SiBaFe particles exhibited reflection loss below −10 dB over 7.01~10.11 GHz and a minimum of −14.92 dB when the thickness of their paraffin-based composite was 1.5 mm. We provided a low-cost and efficient kinetic strategy to stabilize the grain size in nanoscale and microwave absorption for nanocrystalline magnetic absorbents working at elevated temperature. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials II)
Show Figures

Figure 1

16 pages, 4713 KiB  
Article
Growth of Quasi-Two-Dimensional CrTe Nanoflakes and CrTe/Transition Metal Dichalcogenide Heterostructures
by Dawei Cheng, Jiayi Liu and Bin Wei
Nanomaterials 2024, 14(10), 868; https://doi.org/10.3390/nano14100868 - 16 May 2024
Viewed by 360
Abstract
Two-dimensional (2D) van der Waals layered materials have been explored in depth. They can be vertically stacked into a 2D heterostructure and represent a fundamental way to explore new physical properties and fabricate high-performance nanodevices. However, the controllable and scaled growth of non-layered [...] Read more.
Two-dimensional (2D) van der Waals layered materials have been explored in depth. They can be vertically stacked into a 2D heterostructure and represent a fundamental way to explore new physical properties and fabricate high-performance nanodevices. However, the controllable and scaled growth of non-layered quasi-2D materials and their heterostructures is still a great challenge. Here, we report a selective two-step growth method for high-quality single crystalline CrTe/WSe2 and CrTe/MoS2 heterostructures by adopting a universal CVD strategy with the assistance of molten salt and mass control. Quasi-2D metallic CrTe was grown on pre-deposited 2D transition metal dichalcogenides (TMDC) under relatively low temperatures. A 2D CrTe/TMDC heterostructure was established to explore the interface’s structure using scanning transmission electron microscopy (STEM), and also demonstrate ferromagnetism in a metal–semiconductor CrTe/TMDC heterostructure. Full article
(This article belongs to the Special Issue Nano-Structured Thin Films: Growth, Characteristics, and Application)
Show Figures

Figure 1

16 pages, 2631 KiB  
Review
High-Speed Electro-Optic Modulators Based on Thin-Film Lithium Niobate
by Songyan Hou, Hao Hu, Zhihong Liu, Weichuan Xing, Jincheng Zhang and Yue Hao
Nanomaterials 2024, 14(10), 867; https://doi.org/10.3390/nano14100867 - 16 May 2024
Viewed by 591
Abstract
Electro-optic modulators (EOMs) are pivotal in bridging electrical and optical domains, essential for diverse applications including optical communication, microwave signal processing, sensing, and quantum technologies. However, achieving the trifecta of high-density integration, cost-effectiveness, and superior performance remains challenging within established integrated photonics platforms. [...] Read more.
Electro-optic modulators (EOMs) are pivotal in bridging electrical and optical domains, essential for diverse applications including optical communication, microwave signal processing, sensing, and quantum technologies. However, achieving the trifecta of high-density integration, cost-effectiveness, and superior performance remains challenging within established integrated photonics platforms. Enter thin-film lithium niobate (LN), a recent standout with its inherent electro-optic (EO) efficiency, proven industrial performance, durability, and rapid fabrication advancements. This platform inherits material advantages from traditional bulk LN devices while offering a reduced footprint, wider bandwidths, and lower power requirements. Despite its recent introduction, commercial thin-film LN wafers already rival or surpass established alternatives like silicon and indium phosphide, benefitting from decades of research. In this review, we delve into the foundational principles and technical innovations driving state-of-the-art LN modulator demonstrations, exploring various methodologies, their strengths, and challenges. Furthermore, we outline pathways for further enhancing LN modulators and anticipate exciting prospects for larger-scale LN EO circuits beyond singular components. By elucidating the current landscape and future directions, we highlight the transformative potential of thin-film LN technology in advancing electro-optic modulation and integrated photonics. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop