Previous Issue
Volume 4, March
 
 

Nanoenergy Adv., Volume 4, Issue 2 (June 2024) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 10597 KiB  
Review
Recent Progress in Blue Energy Harvesting Based on Triboelectric Nanogenerators
by Long Liu, Tong Hu, Xinmao Zhao and Chengkuo Lee
Nanoenergy Adv. 2024, 4(2), 156-173; https://doi.org/10.3390/nanoenergyadv4020010 - 23 May 2024
Viewed by 256
Abstract
This paper reviews and summarizes recent progress in blue energy harvesting based on a triboelectric nanogenerator (TENG). This review covers TENG-based blue energy harvesters (BEHs) with different inertial units in spherical structures, derivative spherical structures, buoy structures, and liquid–solid contact structures. These research [...] Read more.
This paper reviews and summarizes recent progress in blue energy harvesting based on a triboelectric nanogenerator (TENG). This review covers TENG-based blue energy harvesters (BEHs) with different inertial units in spherical structures, derivative spherical structures, buoy structures, and liquid–solid contact structures. These research works have paved the way for TENG-based BEHs working under low-frequency waves and harvesting wave energy efficiently. The TENG-based BEH unit design and networking strategy are also discussed, along with highlighted research works. The advantages and disadvantages of different TENG structures with other inertial units are explored and discussed. Meanwhile, power management strategies are also mentioned in this paper. Thus, as a promising blue energy harvesting technology, the TENG is expected to significantly contribute to developing low-cost, lightweight, and high-performance BEHs supporting more frequent marine activities. Full article
Show Figures

Figure 1

10 pages, 1287 KiB  
Article
Modeling Particle-Doped Materials for Performance Improvement of Contact-Separation Triboelectric Nanogenerators
by Carlos Callaty, Isabel Gonçalves, Cátia Rodrigues and João Ventura
Nanoenergy Adv. 2024, 4(2), 147-155; https://doi.org/10.3390/nanoenergyadv4020009 - 30 Apr 2024
Viewed by 373
Abstract
Triboelectric nanogenerators (TENGs) are an attractive energy harvesting technology due to their high efficiency and vast applications in self-powered sensors. In this work, dielectric–dielectric contact-separation TENGs were modeled with time-dependent finite element simulations with the objective of improving TENG’s performance by enhancing the [...] Read more.
Triboelectric nanogenerators (TENGs) are an attractive energy harvesting technology due to their high efficiency and vast applications in self-powered sensors. In this work, dielectric–dielectric contact-separation TENGs were modeled with time-dependent finite element simulations with the objective of improving TENG’s performance by enhancing the relative permittivity (εr).To achieve this, the chosen material (PDMS, εr=2.75) was doped with SrTiO3 (εr = 300) particles. The open-circuit voltage (VOC) and short-circuit current (ISC) remained constant as ϵr increased, as predicted by existent models, but in contradiction with available experimental data. Thus, we introduced a charge correction model relating ϵr and surface charge density, allowing us to observe an increase in TENG performance output (VOC and ISC). This work shows that finite element simulations are suitable for better understanding and optimizing TENGs’ performance. Full article
Show Figures

Graphical abstract

14 pages, 7100 KiB  
Article
Surface Charge: An Advantage for the Piezoelectric Properties of GaN Nanowires
by Tanbir Kaur Sodhi, Pascal Chrétien, Quang Chieu Bui, Amaury Chevillard, Laurent Travers, Martina Morassi, Maria Tchernycheva, Frédéric Houzé and Noelle Gogneau
Nanoenergy Adv. 2024, 4(2), 133-146; https://doi.org/10.3390/nanoenergyadv4020008 - 2 Apr 2024
Viewed by 545
Abstract
The optimization of the new generation of piezoelectric nanogenerators based on 1D nanostructures requires a fundamental understanding of the different physical mechanisms at play, especially those that become predominant at the nanoscale regime. One such phenomenon is the surface charge effect (SCE), which [...] Read more.
The optimization of the new generation of piezoelectric nanogenerators based on 1D nanostructures requires a fundamental understanding of the different physical mechanisms at play, especially those that become predominant at the nanoscale regime. One such phenomenon is the surface charge effect (SCE), which is very pronounced in GaN NWs with sub-100 nm diameters. With an advanced nano-characterization tool derived from AFM, the influence of SCE on the piezo generation capacity of GaN NWs is investigated by modifying their immediate environment. As-grown GaN NWs are analysed and compared to their post-treated counterparts featuring an Al2O3 shell. We establish that the output voltages systematically decrease by the Al2O3 shell. This phenomenon is directly related to the decrease of the surface trap density in the presence of Al2O3 and the corresponding reduction of the surface Fermi level pinning. This leads to a stronger screening of the piezoelectric charges by the free carriers. These experimental results demonstrate and confirm that the piezo-conversion capacity of GaN NWs is favoured by the presence of the surface charges. Full article
(This article belongs to the Special Issue Fabrication and Characterization of Materials for Nanoenergy)
Show Figures

Figure 1

Previous Issue
Back to TopTop