Previous Issue
Volume 2, March
 
 

Kinases Phosphatases, Volume 2, Issue 2 (June 2024) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 1321 KiB  
Review
Exogenous and Endogenous Molecules Potentially Proficient to Modulate Mitophagy in Cardiac Disorders
by Moeka Nakashima, Naoko Suga and Satoru Matsuda
Kinases Phosphatases 2024, 2(2), 166-178; https://doi.org/10.3390/kinasesphosphatases2020010 - 23 May 2024
Viewed by 254
Abstract
It has been proposed that procedures which upregulate mitochondrial biogenesis and autophagy by replacing damaged mitochondria with healthy ones may prevent the development of several heart diseases. A member of serine and threonine kinases, adenosine monophosphate-activated protein kinase (AMPK), could play essential roles [...] Read more.
It has been proposed that procedures which upregulate mitochondrial biogenesis and autophagy by replacing damaged mitochondria with healthy ones may prevent the development of several heart diseases. A member of serine and threonine kinases, adenosine monophosphate-activated protein kinase (AMPK), could play essential roles in the autophagy and/or mitophagy. AMPK is widely distributed in various cells, which might play diverse regulatory roles in different tissues and/or organs. In fact, changes in the kinase function of AMPK due to alteration of activity have been linked with diverse pathologies including cardiac disorders. AMPK can regulate mitochondrial biogenesis via peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) signaling and also improve oxidative mitochondrial metabolism through inhibition of mechanistic/mammalian target of rapamycin (mTOR) pathway, which may also modulate the autophagy/mitophagy through autophagy activating kinase 1 (ULK1) and/or transforming growth factor beta (TGF-β) signaling. Therefore, the modulation of AMPK in autophagy/mitophagy pathway might probably be thought as a therapeutic tactic for several cardiac disorders. As kinases are amongst the most controllable proteins, in general, the design of small molecules targeting kinases might be an eye-catching avenue to modulate cardiac function. Some analyses of the molecular biology underlying mitophagy suggest that nutraceuticals and/or drugs including specific AMPK modulator as well as physical exercise and/or dietary restriction that could modulate AMPK may be useful against several heart diseases. These observations may virtually be limited to preclinical studies. Come to think of these, however, it is speculated that some nutraceutical regimens might have positive potential for managing some of cardiac disorders. Full article
(This article belongs to the Special Issue Human Protein Kinases: Development of Small-Molecule Therapies)
Show Figures

Figure 1

15 pages, 323 KiB  
Review
Cancer Stem Cell Metastatic Checkpoints and Glycosylation Patterns: Implications for Therapeutic Strategies
by Sara Sadat Aghamiri and Rada Amin
Kinases Phosphatases 2024, 2(2), 151-165; https://doi.org/10.3390/kinasesphosphatases2020009 - 22 Apr 2024
Viewed by 656
Abstract
Cancer stem cells (CSCs), found within tumors, are powerful drivers of disease recurrence and metastasis. Their abilities to self-renew and maintain stem-like properties make treatment difficult, as their heterogeneity and metastatic properties can lead to resistance and limit the effectiveness of standard therapies. [...] Read more.
Cancer stem cells (CSCs), found within tumors, are powerful drivers of disease recurrence and metastasis. Their abilities to self-renew and maintain stem-like properties make treatment difficult, as their heterogeneity and metastatic properties can lead to resistance and limit the effectiveness of standard therapies. Given their significance, CSCs are typically isolated based on combinations of markers, which often indicate heterogeneous populations of CSCs. The lack of consensus in cell characterization poses challenges in defining and targeting these cells for effective therapeutic interventions. In this review, we suggest five promising molecules—ABCB5, CD26, CD66c, uPAR, and Trop-2—chosen specifically for their distinct distribution within cancer types and clinical relevance. These markers, expressed at the cell surface of CSCs, could significantly enhance the specificity of cancer stemness characterization. This review focuses on describing their pivotal roles as biomarker checkpoints for metastasis. Additionally, this review outlines existing literature on glycosylation modifications, which present intriguing epitopes aimed at modulating the stability and function of these markers. Finally, we summarize several promising in vivo and clinical trial approaches targeting the mentioned surface markers, offering potential solutions to overcome the therapeutic resistance of CSCs and addressing current gaps in treatment strategies. Full article
15 pages, 2638 KiB  
Article
Short-Chain Fatty Acids Suppress mTOR Signaling in Colon Cancer Cells via Long Non-Coding RNA RMST
by Jiuhui Wang, Yande Guo, Xiangwei Fang, Yuanqin Zhang and Daotai Nie
Kinases Phosphatases 2024, 2(2), 136-150; https://doi.org/10.3390/kinasesphosphatases2020008 - 1 Apr 2024
Viewed by 628
Abstract
Short-chain fatty acids (SCFAs), derived from fermentation of dietary fibers and resistant starch by the microbiota in the colon, exert multiple effects on colonic functions, including tumor suppressing activities. Our previous studies found that SCFAs induced autophagy in colon cancer cells via downregulating [...] Read more.
Short-chain fatty acids (SCFAs), derived from fermentation of dietary fibers and resistant starch by the microbiota in the colon, exert multiple effects on colonic functions, including tumor suppressing activities. Our previous studies found that SCFAs induced autophagy in colon cancer cells via downregulating mTOR signaling, but the mechanism involved in mTOR suppression still needs to be defined. In this study, we identified rhabdomyosarcoma 2 associated transcript (RMST), a long non-coding RNA, as a key mediator for SCFAs to suppress mTOR activation in colon cancer cells. RMST could be significantly induced by SCFAs in a time- and dose-dependent manner. RMST, by itself, was sufficient to suppress mTOR signaling and augment autophagosome formation. Depletion of RMST, through siRNA or CRISPR knockdown, reduced the abilities of SCFAs to suppress mTOR activation or to induce autophagic responses. RMST increased the expression level of TSC2, a negative regulator of the mTOR signaling pathway. Our data delineate a novel RMST/TSC2 cellular pathway, enlisted by SCFAs, to modulate mTOR activities in colon cancer cells. Full article
Show Figures

Figure 1

26 pages, 8307 KiB  
Review
CK2 Inhibitors Targeting Inside and Outside the Catalytic Box
by Sophie Day-Riley, Rebekah M. West, Paul D. Brear, Marko Hyvönen and David R. Spring
Kinases Phosphatases 2024, 2(2), 110-135; https://doi.org/10.3390/kinasesphosphatases2020007 - 26 Mar 2024
Viewed by 1278
Abstract
CK2 is a protein kinase that plays an important role in numerous cellular pathways involved in cell growth, differentiation, proliferation, and death. Consequently, upregulation of CK2 is implicated in many disease types, in particular cancer. As such, CK2 has gained significant attention as [...] Read more.
CK2 is a protein kinase that plays an important role in numerous cellular pathways involved in cell growth, differentiation, proliferation, and death. Consequently, upregulation of CK2 is implicated in many disease types, in particular cancer. As such, CK2 has gained significant attention as a potential therapeutic target in cancer, and over 40 chemical probes targeting CK2 have been developed in the past decade. In this review, we highlighted several chemical probes that target sites outside the conventional ATP-binding site. These chemical probes belong to different classes of molecules, from small molecules to peptides, and possess different mechanisms of action. Many of the chemical probes discussed in this review could serve as promising new candidates for drugs selectively targeting CK2. Full article
(This article belongs to the Special Issue Past, Present and Future of Protein Kinase CK2 Research)
Show Figures

Figure 1

Previous Issue
Back to TopTop