Research on the Construction Mechanical Behavior and Deformation Characteristics of Lining Structure—2nd Edition

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Structures".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 427

Special Issue Editors

School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
Interests: tunnel and underground engineering; construction mechanics of large and complex underground structures; research and development of underground engineering construction machinery and equipment; selection and intelligent control of tunnel construction equipment in extreme environments; application of renewable fiber materials in concrete lining structures
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
Interests: structure system and deformation control of tunnels in complex and unfavorable geological environments with weak surrounding rocks; foundation pit support structures
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Lining is a permanent support structure constructed with reinforced concrete and other materials around the tunnel body to prevent the deformation or collapse of surrounding rock.

With the huge demand for transportation and thus the rapid development of tunnels and other underground engineering construction technologies, some tunnels that are operating have entered the life cycle of closure and repair. As a support structure, lining has been confirmed to play an important role in engineering construction, operation, and maintenance.

This Special Issue encourages all professionals, researchers, managers, and planners engaged in the construction, operation, and maintenance of civil engineering, tunnels, and corresponding underground engineering, to share their projects.

Dr. Heng Zhang
Dr. Huayun Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • tunnel engineering
  • underground engineering
  • construction mechanics
  • lining structure
  • support parameters
  • deformation control
  • surrounding rock characteristics

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Other

14 pages, 6810 KiB  
Technical Note
Innovative Approaches and Challenges in the Demolition of Large-Span Post-Tensioned Beams: Insights from a Case Study
by Mohammad Jonaidi, Adam Kaplan and Ali Keyvanfar
Buildings 2024, 14(5), 1380; https://doi.org/10.3390/buildings14051380 - 11 May 2024
Viewed by 304
Abstract
Large-span, post-tensioned (PT) beams play a crucial role in maximizing the benefits of post-tensioning techniques. Bonded and unbonded systems are prevalent, with the latter being more widespread in the United States. While bonded systems are advantageous for creating long spans when multiple tendons [...] Read more.
Large-span, post-tensioned (PT) beams play a crucial role in maximizing the benefits of post-tensioning techniques. Bonded and unbonded systems are prevalent, with the latter being more widespread in the United States. While bonded systems are advantageous for creating long spans when multiple tendons are grouped in ducts, limited studies in the literature exist on their demolition. With a case study, this paper addresses the unique challenge of demolishing large-span-bonded, post-tensioned beams that occurs due to a building’s functional change. Emphasizing insights for engineers, it explores the use of cutting and dismantling methods, thereby considering the presence of prestressed cables. The demolition process is distinctive due to the presence of numerous prestressed cables along the beams, necessitating a specialized and cautious cutting approach. This is accomplished through the use of a drilling technique that selectively distresses the tendons, ensuring they are not all affected simultaneously. An intriguing observation discussed in this paper pertains to the occurrence of horizontal cracks accompanied by loud sounds following the drilling process, thereby offering insights from the design perspective of PT systems. This paper details an innovative method for safely demolishing large-span, bonded PT beams using ground-penetrating radar and computer models to navigate structural complexities and ensure nearby structures’ safety. Full article
Show Figures

Figure 1

Back to TopTop