Precision Medicine and Genetics

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Molecular Genetics and Genomics".

Deadline for manuscript submissions: closed (20 March 2024) | Viewed by 1903

Special Issue Editor


E-Mail Website
Guest Editor
Belay Diagnostics, Chicago, IL, USA
Interests: precision medicine; genetic association studies; genetic predisposition to disease; genetic testing; viro-therapeutics and oncolytic viruses

Special Issue Information

Dear Colleagues,

Precision Medicine is an emerging science for the treatment and prevention of disease considering the variability in an individual’s genetic makeup in the context of their environment and lifestyle. Precision medicine allows for the identification of genetic causation in case of inherited disorders, the determination of variants for cancer diagnosis and treatment of disease, as well as risk assessment for disease, enabling individualized or tailored applications for disease management.

This Special Issue entitled “Precision Medicine and Genetics” is intended to provide a platform for a wide range of reviews, research articles, communications, case reports and technical notes related to genetics and genomic studies in clinical diagnostics. We encourage submissions that focus on a strong precision medicine component and are devoted to assay validation, novel variants in disease, functional studies that impact variant evaluation for clinical pathogenicity, and machine learning of the genetic markers associated with inherited diseases and cancer. Please contact the Guest Editors should you have any questions related to the scope of this Special Issue.

Dr. Honey Reddi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • genetics
  • clinical assay validation
  • precision medicine
  • genomics

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 1106 KiB  
Article
Resolving Discrepancies in Idylla BRAF Mutational Assay Results Using Targeted Next-Generation Sequencing
by Giby V. George, Huijie Liu, Audrey N. Jajosky and Zoltán N. Oltvai
Genes 2024, 15(5), 527; https://doi.org/10.3390/genes15050527 - 23 Apr 2024
Viewed by 546
Abstract
BRAF mutation identification is important for the diagnosis and treatment of several tumor types, both solid and hematologic. Rapid identification of BRAF mutations is required to determine eligibility for targeted BRAF inhibitor therapy. The Idylla BRAF mutation assay is a rapid, multiplex allele-specific [...] Read more.
BRAF mutation identification is important for the diagnosis and treatment of several tumor types, both solid and hematologic. Rapid identification of BRAF mutations is required to determine eligibility for targeted BRAF inhibitor therapy. The Idylla BRAF mutation assay is a rapid, multiplex allele-specific PCR test designed to detect the most common oncogenic BRAF V600 mutations in formalin-fixed paraffin-embedded (FFPE) tissue samples. Here, we describe the validation of the Idylla BRAF mutation assay in our laboratory. During routine clinical practice, we noticed cases in which BRAF V600 mutations were identified with unusual amplification curves, with three cases displaying a delayed amplification within a double amplification pattern and two false-positive calls. We therefore initiated a quality improvement effort to systematically and retrospectively evaluate next-generation sequencing (NGS)-tested cases with BRAF mutations identified within five amino acids of BRAF codon V600 and did not identify additional false-positive cases. We hypothesize that late amplification in a double amplification pattern may represent non-specific amplification, whereas cases displaying single delayed amplification curves may stem from the presence of either non-V600 variants, very low-level V600 variants, cytosine deamination artifacts, and/or non-specific amplification by an allele-specific PCR primer. Regardless, we recommend that Idylla BRAF cases with non-classical amplification curves undergo reflex NGS testing. These findings are likely relevant for other Idylla assays interrogating hotspot mutations in genes such as EGFR, IDH1/2, KRAS, and NRAS. Full article
(This article belongs to the Special Issue Precision Medicine and Genetics)
Show Figures

Figure 1

10 pages, 1279 KiB  
Communication
Paternally Inherited Noonan Syndrome Caused by a PTPN11 Variant May Exhibit Mild Symptoms: A Case Report and Literature Review
by Ji Yoon Han and Joonhong Park
Genes 2024, 15(4), 445; https://doi.org/10.3390/genes15040445 - 31 Mar 2024
Viewed by 847
Abstract
Background: Noonan syndrome (NS)/Noonan syndrome with multiple lentigines (NSML) is commonly characterized by distinct facial features, a short stature, cardiac problems, and a developmental delay of variable degrees. However, as many as 50% of individuals diagnosed with NS/NSML have a mildly affected parent [...] Read more.
Background: Noonan syndrome (NS)/Noonan syndrome with multiple lentigines (NSML) is commonly characterized by distinct facial features, a short stature, cardiac problems, and a developmental delay of variable degrees. However, as many as 50% of individuals diagnosed with NS/NSML have a mildly affected parent or relative due to variable expressivity and possibly incomplete penetrance of the disorder, and those who are recognized to have NS only after a diagnosis are established in a more obviously affected index case. Methods: In order to collect intergenerational data reported from previous studies, electronic journal databases containing information on the molecular genetics of PTPN11 were searched from 2000 to 2022. Results: We present a case of a proband with a PTPN11 variant (c.1492C > T/p.Arg498Trp) inherited from an asymptomatic father, displaying only mild intellectual disability without classical symptoms of NS. Among our cases and the reported NS cases caused by the PTPN11 p.Arg498Trp variant, cardiac abnormalities (6/11), facial dysmorphism (7/11), skin pigmentation (4/11), growth problems (4/11), and sensorineural hearing loss (2/11) have been observed. NS/NSML patients with the PTPN11 p.Arg498Trp variant tend to exhibit relatively lower frequencies of skin pigmentation, facial dysmorphism and cardiac abnormalities and mild symptoms compared to those carrying any other mutated PTPN11. Conclusions: Paternally inherited NS/NSML caused by a PTPN11 p.Arg498Trp variant, including our cases, may exhibit relatively lower frequencies of abnormal features and mild symptoms. This could be ascribed to potential gene–gene interactions, gene–environment interactions, the gender and phenotype of the transmitting parent, or ethnic differences that influence the clinical phenotype. Full article
(This article belongs to the Special Issue Precision Medicine and Genetics)
Show Figures

Figure 1

Back to TopTop