ijms-logo

Journal Browser

Journal Browser

Properties and Applications of Nanoparticles and Nanomaterials

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Nanoscience".

Deadline for manuscript submissions: 20 September 2024 | Viewed by 1394

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Interests: corrosion; alloy design; microstructure; mechanical property; welding; fracture and failure
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanomaterials have rapidly developed and attention surrounding their use has increased in recent years. The emergence of various nanomaterials, i.e., nanoparticles, nanograined alloys, gradient nanostructures, is expected to make it possible for materials with super or very special properties to be applied in unusual practical contexts. There is a wide range of applications for nanomaterials in biochemistry or molecular medicine, fuel cells or metal-ion batteries, flexible electronics, as well various components related to energy. The physical and chemical properties of nanostructures are determined by their chemical composition and structure and are also affected by the forming process, which is critical for reliability and life in practical applications.

The purpose of this Special Issue is to provide a research forum to report on structure, properties, processing and applications for nanoparticles and nanomaterials to explore more possibilities to address intractable challenges.

Topics of interest include, but are not limited to, the studies mentioned above. Other relevant studies, such as the design of novel nanostructures or modification of nanoparticles, will also be considered. Research articles and reviews in this area of study are welcome.

We look forward to receiving your contributions.

Dr. Xiaogang Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanostructures
  • nanoparticles
  • microstructure characterization
  • material design
  • evaluation of mechanical properties
  • applications of nanomaterials

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 5601 KiB  
Article
The Induction of Combined Hyperthermal Ablation Effect of Irreversible Electroporation with Polydopamine Nanoparticle-Coated Electrodes
by Sung-Min Jeon, Enkhzaya Davaa, Ratchapol Jenjob, Chiravoot Pechyen, Sitakan Natphopsuk, Seok Jeong, Hye Jin Yoo and Su-Geun Yang
Int. J. Mol. Sci. 2024, 25(8), 4317; https://doi.org/10.3390/ijms25084317 - 13 Apr 2024
Viewed by 688
Abstract
Irreversible electroporation (IRE) is a prominent non-thermal ablation method widely employed in clinical settings for the focal ablation therapy of solid tumors. Utilizing high-voltage, short-duration electric pulses, IRE induces perforation defects in the cell membrane, leading to apoptotic cell death. Despite the promise [...] Read more.
Irreversible electroporation (IRE) is a prominent non-thermal ablation method widely employed in clinical settings for the focal ablation therapy of solid tumors. Utilizing high-voltage, short-duration electric pulses, IRE induces perforation defects in the cell membrane, leading to apoptotic cell death. Despite the promise of irreversible electroporation (IRE) in clinical applications, it faces challenges concerning the coverage of target tissues for ablation, particularly when compared to other thermal ablation therapies such as radiofrequency ablation, microwave ablation, and cryoablation. This study aims to investigate the induced hyperthermal effect of IRE by applying a polydopamine nanoparticle (Dopa NP) coating on the electrode. We hypothesize that the induced hyperthermal effect enhances the therapeutic efficacy of IRE for cancer ablation. First, we observed the hyperthermal effect of IRE using Dopa NP-coated electrodes in hydrogel phantom models and then moved to in vivo models. In particular, in in vivo animal studies, the IRE treatment of rabbit hepatic lobes with Dopa NP-coated electrodes exhibited a two-fold higher increase in temperature (ΔT) compared to non-coated electrodes. Through a comprehensive analysis, we found that IRE treatment with Dopa NP-coated electrodes displayed the typical histological signatures of hyperthermal ablation, including the disruption of the hepatic cord and lobular structure, as well as the infiltration of erythrocytes. These findings unequivocally highlight the combined efficacy of IRE with Dopa NPs for electroporation and the hyperthermal ablation of target cancer tissues. Full article
(This article belongs to the Special Issue Properties and Applications of Nanoparticles and Nanomaterials)
Show Figures

Figure 1

Back to TopTop