materials-logo

Journal Browser

Journal Browser

Microstructure, Mechanical Properties, and Deformation Characteristics of Metals and Alloys—2nd Edition

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Metals and Alloys".

Deadline for manuscript submissions: 20 July 2024 | Viewed by 140

Special Issue Editor


E-Mail Website
Guest Editor
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
Interests: metallic materials; composites; grain boundary; deformation behavior; twins; mechanical properties, severe plastic deformation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As the largest group of engineering materials, metals and alloys have always played an important role in the development of the world economy. Ready availability, ease of fabrication, and desirable mechanical properties are the principal attributes of metals and alloys. Metallic materials may be divided into two large groups, ferrous and nonferrous, depending on whether iron or another element is the principal constituent. Ferrous materials can be further grouped into wrought irons, cast irons, carbon steels, and alloy steels. Common nonferrous materials include alloys of copper, aluminum, magnesium, nickel, lead, tin, and zinc.

The relationship between microstructure, mechanical properties, and deformation characteristics is critical in the research of metals and alloys. This Special Issue welcomes the submission of high-quality research on various aspects of metals and alloys, including microstructure evolution, materials design, numerical modeling, processing technology, and failure mechanisms. In particular, we encourage papers on the relationship between advanced manufacturing processing and the microstructure properties of metals and alloys.

Dr. Guobing Wei
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microstructure evolution
  • mechanical and physical properties
  • strengthening mechanisms
  • numerical modeling
  • failure mechanisms

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3938 KiB  
Article
Microstructure Evolution and Strengthening Mechanism of Dual-Phase Mg–8.3Li–3.1Al–1.09Si Alloys during Warm Rolling
by Ying Wang, Guangying Wu, Bingbing Liang, Yongquan He, Changhong Liu, Junwei Liu and Guobing Wei
Materials 2024, 17(10), 2321; https://doi.org/10.3390/ma17102321 (registering DOI) - 14 May 2024
Abstract
In this study, the rolling process of the warm-rolled duplex-phase Mg–8.3Li–3.1Al–1.09Si alloy and the strengthening mechanism of as-rolled Mg–Li alloy were investigated. The highest ultimate tensile strength (UTS, 323.66 ± 19.89 MPa) could be obtained using a three-pass rolling process with a 30% [...] Read more.
In this study, the rolling process of the warm-rolled duplex-phase Mg–8.3Li–3.1Al–1.09Si alloy and the strengthening mechanism of as-rolled Mg–Li alloy were investigated. The highest ultimate tensile strength (UTS, 323.66 ± 19.89 MPa) could be obtained using a three-pass rolling process with a 30% thickness reduction for each pass at 553 K. The strength of the as-rolled LAS831 alloy is determined by a combination of second-phase strengthening, grain refinement strengthening, dislocation strengthening, and load-transfer reinforcement. Of these factors, dislocation strengthening, which is caused by strain hardening of the α-Mg phase, can produce a good strengthening effect but also cause a decrease in plasticity. The Mg2Si phase is broken up into particles or strips during the rolling process. After three passes, the AlLi particles were transformed into an AlLi phase, and the Mg2Si particles and nanosized AlLi particles strengthened the second phase to form a hard phase. The average size of the DRXed β-Li grains decreased with each successive rolling pass, and the average size of recrystallized grains in the three-pass-rolled LAS831 alloy became as low as 0.27 μm. The interface between the strip-like Mg2Si phase and the α-Mg phase is characterized by semicoherent bonding, which can promote the transfer of tensile and shear forces from the matrix to the strip-like Mg2Si phase, thereby improving the strength of the matrix and thus strengthening the LAS831 alloy. Full article
Show Figures

Figure 1

Back to TopTop