Previous Issue
Volume 13, April
 
 

Antioxidants, Volume 13, Issue 5 (May 2024) – 103 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 852 KiB  
Article
Phenolic and Antioxidant Characterization of Fruit By-Products for Their Nutraceuticals and Dietary Supplements Valorization under a Circular Bio-Economy Approach
by Cristina Terenzi, Gabriela Bermudez, Francesca Medri, Lara Davani, Vincenzo Tumiatti, Vincenza Andrisano, Serena Montanari and Angela De Simone
Antioxidants 2024, 13(5), 604; https://doi.org/10.3390/antiox13050604 - 14 May 2024
Viewed by 88
Abstract
Agri-food by-products, obtained as waste from the food industry, negatively impact the global economy and the environment. In order to valorize waste materials from fruit juices and tomato sauces as upcycled materials rich in health-promoting compounds, they were characterized in terms of polyphenolic [...] Read more.
Agri-food by-products, obtained as waste from the food industry, negatively impact the global economy and the environment. In order to valorize waste materials from fruit juices and tomato sauces as upcycled materials rich in health-promoting compounds, they were characterized in terms of polyphenolic and protein content. The results obtained were compared with those collected for their final products. The recovery of polyphenols was performed via ultrasound-assisted extraction (UAE). A high-performance liquid chromatography–diode array detector (HPLC-DAD) method was developed and validated to depict the quali-quantitative polyphenolic profile of both the by-products and the final products. The antioxidant capacity of the resulting extracts was characterized by UV-Vis spectrophotometric assays in terms of total phenolic content (TPC) and total antioxidant status (TAS). Moreover, the protein content was assessed with the Kjeldahl method too. The results highlighted a significant quantity of polyphenols remaining in peach, apricot, and apple by-products, which were able to exert an antioxidant activity (in the range of 4.95 ± 5.69 × 10−1 to 7.06 ± 7.96 × 10−1 mmol Trolox 100 g−1 of dry weight (DW) sample). Conversely, the tomato by-products were highly rich in proteins (11.0 ± 2.00 to 14.4 ± 2.60 g of proteins 100 g−1 DW). The results proved that all by-products may potentially be sustainable ingredients with nutritional and functional value in a circular bio-economy prospect. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
18 pages, 2454 KiB  
Article
Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila
by Wei-Hsiang Hsu, Chanikan Sangkhathat, Mei-Kuang Lu, Wei-Yong Lin, Hsin-Ping Liu and Yun-Lian Lin
Antioxidants 2024, 13(5), 603; https://doi.org/10.3390/antiox13050603 - 14 May 2024
Viewed by 115
Abstract
Blue light is the higher-energy region of the visible spectrum. Excessive exposure to blue light is known to induce oxidative stress and is harmful to the eyes. The stems of Dendrobium nobile Lindl. (Orchidaceae), named Jinchaishihu, have long been used in traditional Chinese [...] Read more.
Blue light is the higher-energy region of the visible spectrum. Excessive exposure to blue light is known to induce oxidative stress and is harmful to the eyes. The stems of Dendrobium nobile Lindl. (Orchidaceae), named Jinchaishihu, have long been used in traditional Chinese medicine (TCM) for nourishing yin, clearing heat, and brightening the eyes. The polysaccharide is one of the major components in D. nobile. However, the effect on ocular cells remains unclear. This study aimed to investigate whether the polysaccharide from D. nobile can protect the eyes from blue light-induced injury. A crude (DN-P) and a partially purified polysaccharide (DN-PP) from D. nobile were evaluated for their protective effects on blue light-induced damage in ARPE-19 and 661W cells. The in vivo study investigated the electroretinographic response and the expression of phototransduction-related genes in the retinas of a Drosophila model. The results showed that DN-P and DN-PP could improve blue light-induced damage in ARPE-19 and 661W cells, including cell viability, antioxidant activity, reactive oxygen species (ROS)/superoxide production, and reverse opsin 3 protein expression in a concentration-dependent manner. The in vivo study indicated that DN-P could alleviate eye damage and reverse the expression of phototransduction-related genes, including ninaE, norpA, Gαq, Gβ76C, Gγ30A, TRP, and TRPL, in a dose-dependent manner in blue light-exposed Drosophila. In conclusion, this is the first report demonstrating that D. nobile polysaccharide pretreatment can protect retinal cells and retinal photoreceptors from blue light-induced damage. These results provide supporting evidence for the beneficial potential of D. nobile in preventing blue light-induced eye damage and improving eyesight. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

11 pages, 939 KiB  
Editorial
Cellular ROS and Antioxidants: Physiological and Pathological Role
by Andrey V. Kozlov, Sabzali Javadov and Natascha Sommer
Antioxidants 2024, 13(5), 602; https://doi.org/10.3390/antiox13050602 - 14 May 2024
Viewed by 116
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen derivatives that include free radicals such as superoxide anion radical (O2•−) and hydroxyl radical (HO), as well as non-radical molecules hydrogen peroxide (H2O2), peroxynitrite (ONOO), and hypochlorous acid (HOCl) [...] Full article
(This article belongs to the Special Issue Cellular ROS and Antioxidants: Physiological and Pathological Role)
Show Figures

Figure 1

14 pages, 5312 KiB  
Article
Anti-Aging Potential of the Two Major Flavonoids Occurring in Asian Water Lily Using In Vitro and In Silico Molecular Modeling Assessments
by Bodee Nutho and Duangjai Tungmunnithum
Antioxidants 2024, 13(5), 601; https://doi.org/10.3390/antiox13050601 - 14 May 2024
Viewed by 74
Abstract
Our previous study investigated the major flavonoids and antioxidant potential of Asian water lily (Nymphaea lotus L., family Nymphaeaceae) stamens and perianth extracts. Quercetin-3-O-rhamnoside (Que-3-Rha) and kaempferol-3-O-galactoside (Kae-3-Gal) were reported as the two most prominent flavonoids found in [...] Read more.
Our previous study investigated the major flavonoids and antioxidant potential of Asian water lily (Nymphaea lotus L., family Nymphaeaceae) stamens and perianth extracts. Quercetin-3-O-rhamnoside (Que-3-Rha) and kaempferol-3-O-galactoside (Kae-3-Gal) were reported as the two most prominent flavonoids found in these extracts. Many flavonoids have been reported on the skin anti-aging effect that are useful for cosmeceutical/phytopharmaceutical application. However, Que-3-Rha and Kae-3-Gal occurring in this medicinal plant have not yet been evaluated for their ability to inhibit skin-aging enzymes. Therefore, this study aimed (1) to assess the enzyme inhibitory activity of Que-3-Rha and Kae-3-Gal, and (2) to conduct molecular modeling of these compounds against critical enzymes involved in skin aging such as collagenase, elastase, and tyrosinase. In vitro enzymatic assays demonstrated that both of the two most prominent flavonoids exhibited moderate to good inhibitory activity toward these enzymes. These experimental findings were supported by molecular docking analysis, which indicated that Que-3-Rha and Kae-3-Gal showed superior binding affinity to the target enzymes compared to the positive controls. Additionally, computational predictions suggested favorable skin permeability and no severe toxicity for both compounds. The results from molecular dynamic (MD) simulation revealed that all the complexes remained stable during the 200 ns MD simulation. Structural analyses and binding free energy calculations also supported the inhibitory potential of these two flavonoids against skin-aging enzymes. In conclusion, this study provides valuable insights into the anti-aging potential of the two major flavonoids occurring in this medicinal plant, paving the way for further development of cosmeceutical/phytopharmaceutical products targeting skin aging. Full article
Show Figures

Figure 1

21 pages, 557 KiB  
Review
Therapeutic Potential of Palmitoylethanolamide in Gastrointestinal Disorders
by Marija Branković, Tijana Gmizić, Marija Dukić, Marija Zdravković, Branislava Daskalović, Davor Mrda, Novica Nikolić, Milica Brajković, Milan Gojgić, Jovana Lalatović, Đorđe Kralj, Ivana Pantić, Marko Vojnović, Tamara Milovanović, Siniša Đurašević and Zoran Todorović
Antioxidants 2024, 13(5), 600; https://doi.org/10.3390/antiox13050600 - 14 May 2024
Viewed by 128
Abstract
Palmitoylethanolamide (PEA) is an endocannabinoid-like bioactive lipid mediator belonging to the family of N-acylethanolamines, most abundantly found in peanuts and egg yolk. When the gastrointestinal (GI) effects of PEA are discussed, it must be pointed out that it affects intestinal motility but also [...] Read more.
Palmitoylethanolamide (PEA) is an endocannabinoid-like bioactive lipid mediator belonging to the family of N-acylethanolamines, most abundantly found in peanuts and egg yolk. When the gastrointestinal (GI) effects of PEA are discussed, it must be pointed out that it affects intestinal motility but also modulates gut microbiota. This is due to anti-inflammatory, antioxidant, analgesic, antimicrobial, and immunomodulatory features. Additionally, PEA has shown beneficial effects in several GI diseases, particularly irritable bowel syndrome and inflammatory bowel diseases, as various studies have shown, and it is important to emphasize its relative lack of toxicity, even at high dosages. Unfortunately, there is not enough endogenous PEA to treat disturbed gut homeostasis, even though it is produced in the GI tract in response to inflammatory stimuli, so exogenous intake is mandatory to achieve homeostasis. Intake of PEA could be through animal and/or vegetable food, but bearing in mind that a high dosage is needed to achieve a therapeutic effect, it must be compensated through dietary supplements. There are still open questions pending to be answered, so further studies investigating PEA’s effects and mechanisms of action, especially in humans, are crucial to implementing PEA in everyday clinical practice. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Gut Health)
Show Figures

Figure 1

20 pages, 16723 KiB  
Article
The Antioxidant Dendrobium officinale Polysaccharide Modulates Host Metabolism and Gut Microbiota to Alleviate High-Fat Diet-Induced Atherosclerosis in ApoE−/− Mice
by Jingyi Qi, Shuaishuai Zhou, Guisheng Wang, Rongrong Hua, Xiaoping Wang, Jian He, Zi Wang, Yinhua Zhu, Junjie Luo, Wenbiao Shi, Yongting Luo and Xiaoxia Chen
Antioxidants 2024, 13(5), 599; https://doi.org/10.3390/antiox13050599 - 13 May 2024
Viewed by 226
Abstract
Background: The discovery of traditional plants’ medicinal and nutritional properties has opened up new avenues for developing pharmaceutical and dietary strategies to prevent atherosclerosis. However, the effect of the antioxidant Dendrobium officinale polysaccharide (DOP) on atherosclerosis is still not elucidated. Purpose: This study [...] Read more.
Background: The discovery of traditional plants’ medicinal and nutritional properties has opened up new avenues for developing pharmaceutical and dietary strategies to prevent atherosclerosis. However, the effect of the antioxidant Dendrobium officinale polysaccharide (DOP) on atherosclerosis is still not elucidated. Purpose: This study aims to investigate the inhibitory effect and the potential mechanism of DOP on high-fat diet-induced atherosclerosis in Apolipoprotein E knockout (ApoE−/−) mice. Study design and methods: The identification of DOP was measured by high-performance gel permeation chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR). We used high-fat diet (HFD)-induced atherosclerosis in ApoE−/− mice as an animal model. In the DOP intervention stage, the DOP group was treated by gavage with 200 μL of 200 mg/kg DOP at regular times each day and continued for eight weeks. We detected changes in serum lipid profiles, inflammatory factors, anti-inflammatory factors, and antioxidant capacity to investigate the effect of the DOP on host metabolism. We also determined microbial composition using 16S rRNA gene sequencing to investigate whether the DOP could improve the structure of the gut microbiota in atherosclerotic mice. Results: DOP effectively inhibited histopathological deterioration in atherosclerotic mice and significantly reduced serum lipid levels, inflammatory factors, and malondialdehyde (F/B) production. Additionally, the levels of anti-inflammatory factors and the activity of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were significantly increased after DOP intervention. Furthermore, we found that DOP restructures the gut microbiota composition by decreasing the Firmicutes/Bacteroidota (F/B) ratio. The Spearman’s correlation analysis indicated that serum lipid profiles, antioxidant activity, and pro-/anti-inflammatory factors were associated with Firmicutes, Bacteroidota, Allobaculum, and Coriobacteriaceae_UCG-002. Conclusions: This study suggests that DOP has the potential to be developed as a food prebiotic for the treatment of atherosclerosis in the future. Full article
(This article belongs to the Special Issue Antioxidants in Cardiovascular Diseases)
Show Figures

Figure 1

29 pages, 2322 KiB  
Review
A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment
by Xin Yi Yeo, Soohyun Kwon, Kimberley R. Rinai, Sungsu Lee, Sangyong Jung and Raekil Park
Antioxidants 2024, 13(5), 598; https://doi.org/10.3390/antiox13050598 - 13 May 2024
Viewed by 216
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors [...] Read more.
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time. Full article
(This article belongs to the Special Issue Oxidative Stress in Ear Damage)
Show Figures

Figure 1

34 pages, 1618 KiB  
Review
Bioactive Compounds Protect Mammalian Reproductive Cells from Xenobiotics and Heat Stress-Induced Oxidative Distress via Nrf2 Signaling Activation: A Narrative Review
by Muhammad Zahoor Khan, Adnan Khan, Bingjian Huang, Ren Wei, Xiyan Kou, Xinrui Wang, Wenting Chen, Liangliang Li, Muhammad Zahoor and Changfa Wang
Antioxidants 2024, 13(5), 597; https://doi.org/10.3390/antiox13050597 - 13 May 2024
Viewed by 206
Abstract
Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body’s antioxidant defenses. It poses a significant threat to the physiological function of reproductive cells. Factors such as xenobiotics and heat can worsen this stress, [...] Read more.
Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body’s antioxidant defenses. It poses a significant threat to the physiological function of reproductive cells. Factors such as xenobiotics and heat can worsen this stress, leading to cellular damage and apoptosis, ultimately decreasing reproductive efficiency. The nuclear factor erythroid 2–related factor 2 (Nrf2) signaling pathway plays a crucial role in defending against oxidative stress and protecting reproductive cells via enhancing antioxidant responses. Dysregulation of Nrf2 signaling has been associated with infertility and suboptimal reproductive performance in mammals. Recent advancements in therapeutic interventions have underscored the critical role of Nrf2 in mitigating oxidative damage and restoring the functional integrity of reproductive cells. In this narrative review, we delineate the harmful effects of heat and xenobiotic-induced oxidative stress on reproductive cells and explain how Nrf2 signaling provides protection against these challenges. Recent studies have shown that activating the Nrf2 signaling pathway using various bioactive compounds can ameliorate heat stress and xenobiotic-induced oxidative distress and apoptosis in mammalian reproductive cells. By comprehensively analyzing the existing literature, we propose Nrf2 as a key therapeutic target for mitigating oxidative damage and apoptosis in reproductive cells caused by exposure to xenobiotic exposure and heat stress. Additionally, based on the synthesis of these findings, we discuss the potential of therapies focused on the Nrf2 signaling pathway to improve mammalian reproductive efficiency. Full article
(This article belongs to the Special Issue Novel Antioxidants for Animal Nutrition—2nd Edition)
Show Figures

Figure 1

20 pages, 3033 KiB  
Article
Assessment of the Antioxidant and Hypolipidemic Properties of Salicornia europaea for the Prevention of TAFLD in Rats
by Aymen Souid, Lucia Giambastiani, Antonella Castagna, Marco Santin, Fabio Vivarelli, Donatella Canistro, Camilla Morosini, Moreno Paolini, Paola Franchi, Marco Lucarini, Andrea Raffaelli, Lucia Giorgetti, Annamaria Ranieri, Vincenzo Longo, Luisa Pozzo and Andrea Vornoli
Antioxidants 2024, 13(5), 596; https://doi.org/10.3390/antiox13050596 - 12 May 2024
Viewed by 222
Abstract
Halophyte species represent valuable reservoirs of natural antioxidants, and, among these, Salicornia europaea stands out as a promising edible plant. In this study, young and old S. europaea leaves were compared for the content of bioactive compounds and antioxidant activity to assess changes [...] Read more.
Halophyte species represent valuable reservoirs of natural antioxidants, and, among these, Salicornia europaea stands out as a promising edible plant. In this study, young and old S. europaea leaves were compared for the content of bioactive compounds and antioxidant activity to assess changes in different growth phases; then, the potential protective effects against low-dose CCl4-induced toxicant-associated fatty liver disease (TAFLD) were investigated by administering an aqueous suspension of young leaves to rats daily for two weeks. Quantification of total and individual phenolic compounds and in vitro antioxidant activity assays (DPPH, FRAP, and ORAC) showed the highest values in young leaves compared to mature ones. Salicornia treatment mitigated CCl4-induced hepatic oxidative stress, reducing lipid peroxidation and protein carbonyl levels, and preserving the decrease in glutathione levels. Electronic paramagnetic resonance (EPR) spectroscopy confirmed these results in the liver and evidenced free radicals increase prevention in the brain. Salicornia treatment also attenuated enzymatic disruptions in the liver’s drug metabolizing system and Nrf2-dependent antioxidant enzymes. Furthermore, histopathological examination revealed reduced hepatic lipid accumulation and inflammation. Overall, this study highlights Salicornia’s potential as a source of bioactive compounds with effective hepatoprotective properties capable to prevent TAFLD. Full article
Show Figures

Figure 1

11 pages, 3765 KiB  
Article
Expression of ChAT, Iba-1, and nNOS in the Central Nervous System following Facial Nerve Injury
by Jae Min Lee, Myung Chul Yoo, Yong Jun Kim, Sung Soo Kim and Seung Geun Yeo
Antioxidants 2024, 13(5), 595; https://doi.org/10.3390/antiox13050595 - 12 May 2024
Viewed by 221
Abstract
Facial nerve injury can cause significant functional impairment, impacting both the peripheral and central nervous systems. The present study evaluated changes in facial motor function, numbers of cholinergic neurons and microglia, and nNOS levels in the facial nucleus of the central nervous system [...] Read more.
Facial nerve injury can cause significant functional impairment, impacting both the peripheral and central nervous systems. The present study evaluated changes in facial motor function, numbers of cholinergic neurons and microglia, and nNOS levels in the facial nucleus of the central nervous system (CNS) following peripheral facial nerve injury. Facial nerve function, as determined by eyeblink and whisker-movement reflexes, was evaluated at baseline and 1, 2, 3, 4, 8, and 12 weeks after inducing facial nerve injury through compression or axotomy. The expression of choline acetyltransferase (ChAT), ionized calcium-binding adaptor molecule 1 (Iba-1), and neuronal nitric oxide synthase (nNOS) in the facial nucleus of the CNS was analyzed 2, 4, and 12 weeks after peripheral facial nerve injury. Compression-induced facial nerve injury was found to lead to temporary facial motor impairment, whereas axotomy resulted in persistent impairment. Moreover, both compression and axotomy reduced ChAT expression and increased Iba-1 and nNOS expression in the facial nucleus, indicating upregulation of an inflammatory response and neurodegeneration. These results indicate that, compared with compression-induced injury, axotomy-induced facial nerve injury results in greater facial motor dysfunction and more persistent microglial and nitric oxide activation in the facial nucleus of the CNS. Full article
(This article belongs to the Special Issue Oxidative Stress and the Central Nervous System)
Show Figures

Figure 1

29 pages, 2656 KiB  
Review
Diabetic Retinopathy: New Treatment Approaches Targeting Redox and Immune Mechanisms
by Qi Tang, Francesco Buonfiglio, Elsa Wilma Böhm, Liyu Zhang, Norbert Pfeiffer, Christina A. Korb and Adrian Gericke
Antioxidants 2024, 13(5), 594; https://doi.org/10.3390/antiox13050594 - 12 May 2024
Viewed by 319
Abstract
Diabetic retinopathy (DR) represents a severe complication of diabetes mellitus, characterized by irreversible visual impairment resulting from microvascular abnormalities. Since the global prevalence of diabetes continues to escalate, DR has emerged as a prominent area of research interest. The development and progression of [...] Read more.
Diabetic retinopathy (DR) represents a severe complication of diabetes mellitus, characterized by irreversible visual impairment resulting from microvascular abnormalities. Since the global prevalence of diabetes continues to escalate, DR has emerged as a prominent area of research interest. The development and progression of DR encompass a complex interplay of pathological and physiological mechanisms, such as high glucose-induced oxidative stress, immune responses, vascular endothelial dysfunction, as well as damage to retinal neurons. Recent years have unveiled the involvement of genomic and epigenetic factors in the formation of DR mechanisms. At present, extensive research explores the potential of biomarkers such as cytokines, molecular and cell therapies, antioxidant interventions, and gene therapy for DR treatment. Notably, certain drugs, such as anti-VEGF agents, antioxidants, inhibitors of inflammatory responses, and protein kinase C (PKC)-β inhibitors, have demonstrated promising outcomes in clinical trials. Within this context, this review article aims to introduce the recent molecular research on DR and highlight the current progress in the field, with a particular focus on the emerging and experimental treatment strategies targeting the immune and redox signaling pathways. Full article
Show Figures

Figure 1

22 pages, 4656 KiB  
Article
Analysis of the Efficiency of Antioxidants in Inhibiting Lipid Oxidation in Terms of Characteristic Kinetic Parameters
by Sonia Losada-Barreiro, Fátima Paiva-Martins and Carlos Bravo-Díaz
Antioxidants 2024, 13(5), 593; https://doi.org/10.3390/antiox13050593 - 11 May 2024
Viewed by 274
Abstract
In this work, we aim to find physical evidence demonstrating the crucial role that the effective concentration of antioxidants (AOs) present at the interfacial region of emulsions has in controlling the inhibition of the lipid oxidation reaction. We prepared a series of antioxidants [...] Read more.
In this work, we aim to find physical evidence demonstrating the crucial role that the effective concentration of antioxidants (AOs) present at the interfacial region of emulsions has in controlling the inhibition of the lipid oxidation reaction. We prepared a series of antioxidants of different hydrophobicities derived from chlorogenic and protocatechuic acids. We first monitored, in intact emulsions, the (sigmoidal) production of conjugated dienes and determined the corresponding induction times, tind. Independently, we determined the effective concentrations of the antioxidants in the same intact emulsions. Results show that both the length of the induction periods and the antioxidant interfacial concentrations parallel each other, with a maximum at the octyl-dodecyl derivatives. The ratio between the interfacial antioxidant concentrations and the induction periods remains constant for all AOs in the same series, so that the rates of initiation of lipid oxidation are the same regardless of the hydrophobicity of the antioxidant employed. The constancy in the rate of initiation provides strong experimental evidence for a direct relationship between interfacial concentrations and antioxidant efficiencies. Results suggest new possibilities to investigate lipid peroxidation under non-forced conditions and are of interest to formulators interested in preparing emulsions with antimicrobial properties. Full article
Show Figures

Graphical abstract

15 pages, 2575 KiB  
Article
GDSL Lipase Gene HTA1 Negatively Regulates Heat Tolerance in Rice Seedlings by Regulating Reactive Oxygen Species Accumulation
by Rui Su, Jingkai Luo, Yingfeng Wang, Yunhua Xiao, Xiong Liu, Huabing Deng, Xuedan Lu, Qiuhong Chen, Guihua Chen, Wenbang Tang and Guilian Zhang
Antioxidants 2024, 13(5), 592; https://doi.org/10.3390/antiox13050592 - 11 May 2024
Viewed by 195
Abstract
High temperature is a significant environmental stress that limits plant growth and agricultural productivity. GDSL lipase is a hydrolytic enzyme with a conserved GDSL sequence at the N-terminus, which has various biological functions, such as participating in plant growth, development, lipid metabolism, and [...] Read more.
High temperature is a significant environmental stress that limits plant growth and agricultural productivity. GDSL lipase is a hydrolytic enzyme with a conserved GDSL sequence at the N-terminus, which has various biological functions, such as participating in plant growth, development, lipid metabolism, and stress resistance. However, little is known about the function of the GDSL lipase gene in the heat tolerance of rice. Here, we characterized a lipase family protein coding gene HTA1, which was significantly induced by high temperature in rice. Rice seedlings in which the mutant hta1 was knocked out showed enhanced heat tolerance, whereas the overexpressing HTA1 showed more sensitivity to heat stress. Under heat stress, hta1 could reduce plant membrane damage and reactive oxygen species (ROS) levels and elevate the activity of antioxidant enzymes. Moreover, real-time quantitative PCR (RT-qPCR) analysis showed that mutant hta1 significantly activated gene expression in antioxidant enzymes, heat response, and defense. In conclusion, our results suggest that HTA1 negatively regulates heat stress tolerance by modulating the ROS accumulation and the expression of heat-responsive and defense-related genes in rice seedlings. This research will provide a valuable resource for utilizing HTA1 to improve crop heat tolerance. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Plants)
17 pages, 5912 KiB  
Article
Oxidative Stress, Lipid Peroxidation and Ferroptosis Are Major Pathophysiological Signatures in the Placental Tissue of Women with Late-Onset Preeclampsia
by Miguel A. Ortega, Luis M. Garcia-Puente, Oscar Fraile-Martinez, Tatiana Pekarek, Cielo García-Montero, Julia Bujan, Leonel Pekarek, Silvestra Barrena-Blázquez, Raquel Gragera, Inmaculada C. Rodríguez-Rojo, Patrocinio Rodríguez-Benitez, Laura López-González, Raul Díaz-Pedrero, Melchor Álvarez-Mon, Natalio García-Honduvilla, Juan A. De León-Luis, Coral Bravo and Miguel A. Saez
Antioxidants 2024, 13(5), 591; https://doi.org/10.3390/antiox13050591 - 11 May 2024
Viewed by 194
Abstract
Preeclampsia, a serious and potentially life-threatening medical complication occurring during pregnancy, is characterized by hypertension and often accompanied by proteinuria and multiorgan dysfunction. It is classified into two subtypes based on the timing of diagnosis: early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being [...] Read more.
Preeclampsia, a serious and potentially life-threatening medical complication occurring during pregnancy, is characterized by hypertension and often accompanied by proteinuria and multiorgan dysfunction. It is classified into two subtypes based on the timing of diagnosis: early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being less severe and exhibiting distinct pathophysiological characteristics, LO-PE is more prevalent than EO-PE, although both conditions have a significant impact on placental health. Previous research indicates that different pathophysiological events within the placenta may contribute to the development of preeclampsia across multiple pathways. In our experimental study, we investigated markers of oxidative stress, ferroptosis, and lipid peroxidation pathways in placental tissue samples obtained from women with LO-PE (n = 68) compared to healthy control pregnant women (HC, n = 43). Through a comprehensive analysis, we observed an upregulation of specific molecules associated with these pathways, including NADPH oxidase 1 (NOX-1), NADPH oxidase 2 (NOX-2), transferrin receptor protein 1 (TFRC), arachidonate 5-lipoxygenase (ALOX-5), acyl-CoA synthetase long-chain family member 4 (ACSL-4), glutathione peroxidase 4 (GPX4) and malondialdehyde (MDA) in women with LO-PE. Furthermore, increased ferric tissue deposition (Fe3+) was observed in placenta samples stained with Perls’ Prussian blue. The assessment involved gene and protein expression analyses conducted through RT-qPCR experiments and immunohistochemistry assays. Our findings underscore the heightened activation of inflammatory pathways in LO-PE compared to HC, highlighting the pathological mechanisms underlying this pregnancy disorder. Full article
Show Figures

Figure 1

19 pages, 2509 KiB  
Article
The Interplay between Perioperative Oxidative Stress and Hepatic Dysfunction after Human Liver Resection: A Prospective Observational Pilot Study
by Florian Primavesi, Thomas Senoner, Sophie Schindler, Aleksandar Nikolajevic, Pietro Di Fazio, Georg Csukovich, Silvia Eller, Bettina Neumayer, Markus Anliker, Eva Braunwarth, Rupert Oberhuber, Thomas Resch, Manuel Maglione, Benno Cardini, Thomas Niederwieser, Silvia Gasteiger, Eckhard Klieser, Herbert Tilg, Stefan Schneeberger, Daniel Neureiter, Dietmar Öfner, Jakob Troppmair and Stefan Stättneradd Show full author list remove Hide full author list
Antioxidants 2024, 13(5), 590; https://doi.org/10.3390/antiox13050590 - 11 May 2024
Viewed by 301
Abstract
Post-hepatectomy liver failure (PHLF) remains the major contributor to death after liver resection. Oxidative stress is associated with postoperative complications, but its impact on liver function is unclear. This first in-human, prospective, single-center, observational pilot study evaluated perioperative oxidative stress and PHLF according [...] Read more.
Post-hepatectomy liver failure (PHLF) remains the major contributor to death after liver resection. Oxidative stress is associated with postoperative complications, but its impact on liver function is unclear. This first in-human, prospective, single-center, observational pilot study evaluated perioperative oxidative stress and PHLF according to the ISGLS (International Study Group for Liver Surgery). Serum 8-isoprostane, 4-hydroxynonenal (4-HNE), total antioxidative capacity, vitamins A and E, and intraoperative, sequential hepatic tissue 4-HNE and UCP2 (uncoupling protein 2) immunohistochemistry (IHC) were assessed. The interaction with known risk factors for PHLF and the predictive potential of oxidative stress markers were analyzed. Overall, 52 patients were included (69.2% major liver resection). Thirteen patients (25%) experienced PHLF, a major factor for 90-day mortality (23% vs. 0%; p = 0.013). Post-resection, pro-oxidative 8-isoprostane significantly increased (p = 0.038), while 4-HNE declined immediately (p < 0.001). Antioxidative markers showed patterns of consumption starting post-resection (p < 0.001). Liver tissue oxidative stress increased stepwise from biopsies taken after laparotomy to post-resection in situ liver and resection specimens (all p < 0.001). Cholangiocarcinoma patients demonstrated significantly higher serum and tissue oxidative stress levels at various timepoints, with consistently higher preoperative values in advanced tumor stages. Combining intraoperative, post-resection 4-HNE serum levels and in situ IHC early predicted PHLF with an AUC of 0.855 (63.6% vs. 0%; p < 0.001). This was also associated with grade B/C PHLF (36.4% vs. 0%; p = 0.021) and 90-day mortality (18.2% vs. 0%; p = 0.036). In conclusion, distinct patterns of perioperative oxidative stress levels occur in patients with liver dysfunction. Combining intraoperative serum and liver tissue markers predicts subsequent PHLF. Cholangiocarcinoma patients demonstrated pronounced systemic and hepatic oxidative stress, with increasing levels in advanced tumor stages, thus representing a worthwhile target for future exploratory and therapeutic studies. Full article
(This article belongs to the Special Issue Oxidative Stress and Liver Disease)
Show Figures

Figure 1

14 pages, 2775 KiB  
Article
The Activity of YCA1 Metacaspase Is Regulated by Reactive Sulfane Sulfur via Persulfidation in Saccharomyces cerevisiae
by Qingda Wang, Xiaokun Zhang, Zhuang Du, Honglei Liu, Yongzhen Xia, Luying Xun and Huaiwei Liu
Antioxidants 2024, 13(5), 589; https://doi.org/10.3390/antiox13050589 - 10 May 2024
Viewed by 147
Abstract
YCA1, the only metacaspase in Saccharomyces cerevisiae, plays important roles in the regulation of chronological lifespan, apoptosis, and cytokinesis. YCA1 has protein hydrolase activity and functions by cleaving itself and target proteins. However, there are few reports about the regulation of YCA1 [...] Read more.
YCA1, the only metacaspase in Saccharomyces cerevisiae, plays important roles in the regulation of chronological lifespan, apoptosis, and cytokinesis. YCA1 has protein hydrolase activity and functions by cleaving itself and target proteins. However, there are few reports about the regulation of YCA1 activity. In this study, we observed that reactive sulfane sulfur (RSS) can inhibit the activity of YCA1. In vitro experiments demonstrated that RSS reacted with the Cys276 of YCA1, the residue central to its protein hydrolase activity, to form a persulfidation modification (protein-SSH). This modification inhibited both its self-cleavage and the cleavage of its substrate protein, BIR1. To investigate further, we constructed a low-endogenous-RSS mutant of S. cerevisiae, BY4742 Δcys3, in which the RSS-producing enzyme cystathionine-γ-lyase (CYS3) was knocked out. The activity of YCA1 was significantly increased by the deletion of CYS3. Moreover, increased YCA1 activity led to reduced chronological lifespan (CLS) and CLS-driven apoptosis. This study unveils the first endogenous factor that regulates YCA1 activity, introduces a novel mechanism of how yeast cells regulate chronological lifespan, and broadens our understanding of the multifaceted roles played by RSS. Full article
(This article belongs to the Special Issue Hydrogen Sulfide Signaling in Biological Systems)
Show Figures

Figure 1

17 pages, 2005 KiB  
Article
The Effect of Lemon Juice (Citrus limon L.) Treated with Melatonin on the Health Status and Treatment of K14HPV16 Mice
by Fátima Badiche-El Hilali, Beatriz Medeiros-Fonseca, Jéssica Silva, Ana C. Silvestre-Ferreira, Maria João Pires, Rui M. Gil da Costa, Francisco Peixoto, Paula A. Oliveira and Daniel Valero
Antioxidants 2024, 13(5), 588; https://doi.org/10.3390/antiox13050588 - 10 May 2024
Viewed by 290
Abstract
Lemon is a fruit rich in antioxidant properties and has several health benefits, namely the reduction of skin edema and anticarcinogenic properties, which are due to its high content of bioactive compounds. Melatonin can improve and preserve the properties of lemon for longer [...] Read more.
Lemon is a fruit rich in antioxidant properties and has several health benefits, namely the reduction of skin edema and anticarcinogenic properties, which are due to its high content of bioactive compounds. Melatonin can improve and preserve the properties of lemon for longer and also has health benefits. The aim of this study was to evaluate the effects of oral administration of lemon juice after melatonin treatment on murinometric parameters of wild-type (WT) mice and transgenic mice carrying human papillomavirus (HPV). Two trials were performed for oral administration of the lemon extract compound: in drinking water and in diet. First of all, lemons were treated by immersion with melatonin at 10 mM. Then, lemons were squeezed, and the juice obtained was freeze-dried and stored to be subsequently added to drinking water or diet, according to the assay. Thus, mice were divided into eight groups in the drink assay (each with n = 5): group 1 (G1, WT, control), group 2 (G2, WT, 1 mL lemon), group 3 (G3, WT, 1.5 mL lemon), group 4 (G4, WT, 2 mL lemon), group 5 (G5, HPV16, control), group 6 (G6, HPV16, 1 mL lemon) group 7 (G6, HPV16, 1.5 mL lemon) and group 8 (G6, HPV16, 2 mL lemon). The diet assay was divided into four groups: group 1 (G1, WT, control), group 2 (G2, WT, 4 mL lemon), group 3 (G3, HPV16, control) and group 4 (G4, HPV16, 4 mL lemon). In the drink assay, the highest concentration of melatonin (308 ng/100 mL) was for groups 4 and 8, while in the food assay, there was only one concentration of melatonin (9.96 ng/g) for groups 2 and 4. Both trials lasted 30 days. During this time, body weight, food and water were recorded. Afterward, they were sacrificed, and samples were collected for different analyses. At the concentrations used, the lemon juice with melatonin had no adverse effects on the animals’ health and showed a positive outcome in modifying weight gain and enhancing antioxidant activity in mice. Moreover, a reduction in the incidence of histological lesions was observed in treated animals. Further research is needed to better understand the effects of lemon extract on health and treatment outcomes in this animal model. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

16 pages, 3666 KiB  
Article
Superoxide Dismutase Mimetic Avasopasem Manganese Enhances Radiation Therapy Effectiveness in Soft Tissue Sarcomas and Accelerates Wound Healing
by Amira Zaher, Kranti A. Mapuskar, Michael S. Petronek, Munir R. Tanas, Alexandra L. Isaacson, Rebecca D. Dodd, Mohammed Milhem, Muhammad Furqan, Douglas R. Spitz, Benjamin J. Miller, Robert A. Beardsley and Bryan G. Allen
Antioxidants 2024, 13(5), 587; https://doi.org/10.3390/antiox13050587 - 10 May 2024
Viewed by 361
Abstract
Soft tissue sarcomas (STSs) are mesenchymal malignant lesions that develop in soft tissues. Despite current treatments, including radiation therapy (RT) and surgery, STSs can be associated with poor patient outcomes and metastatic recurrences. Neoadjuvant radiation therapy (nRT), while effective, is often accompanied by [...] Read more.
Soft tissue sarcomas (STSs) are mesenchymal malignant lesions that develop in soft tissues. Despite current treatments, including radiation therapy (RT) and surgery, STSs can be associated with poor patient outcomes and metastatic recurrences. Neoadjuvant radiation therapy (nRT), while effective, is often accompanied by severe postoperative wound healing complications due to damage to the surrounding normal tissues. Thus, there is a need to develop therapeutic approaches to reduce nRT toxicities. Avasopasem manganese (AVA) is a selective superoxide dismutase mimetic that protects against IR-induced oral mucositis and lung fibrosis. We tested the efficacy of AVA in enhancing RT in STSs and in promoting wound healing. Using colony formation assays and alkaline comet assays, we report that AVA selectively enhanced the STS (liposarcoma, fibrosarcoma, leiomyosarcoma, and MPNST) cellular response to radiation compared to normal dermal fibroblasts (NDFs). AVA is believed to selectively enhance radiation therapy by targeting differential hydrogen peroxide clearance in tumor cells compared to non-malignant cells. STS cells demonstrated increased catalase protein levels and activity compared to normal fibroblasts. Additionally, NDFs showed significantly higher levels of GPx1 activity compared to STSs. The depletion of glutathione using buthionine sulfoximine (BSO) sensitized the NDF cells to AVA, suggesting that GPx1 may, in part, facilitate the selective toxicity of AVA. Finally, AVA significantly accelerated wound closure in a murine model of wound healing post RT. Our data suggest that AVA may be a promising combination strategy for nRT therapy in STSs. Full article
(This article belongs to the Special Issue Radioprotective Effects of Antioxidants)
Show Figures

Figure 1

25 pages, 1036 KiB  
Article
Optimization and Validation of Procyanidins Extraction and Phytochemical Profiling of Seven Herbal Matrices of Nutraceutical Interest
by Niloufar Keivani, Vincenzo Piccolo, Adua Marzocchi, Maria Maisto, Gian Carlo Tenore and Vincenzo Summa
Antioxidants 2024, 13(5), 586; https://doi.org/10.3390/antiox13050586 - 10 May 2024
Viewed by 328
Abstract
Several medicinal herbal plants are extensively used as sources of bioactive compounds with beneficial effects on human health. This study assessed the procyanidin and polyphenol profiles together with the antioxidant potential of seven herbal medical matrices. To achieve this aim, procyanidin extraction from [...] Read more.
Several medicinal herbal plants are extensively used as sources of bioactive compounds with beneficial effects on human health. This study assessed the procyanidin and polyphenol profiles together with the antioxidant potential of seven herbal medical matrices. To achieve this aim, procyanidin extraction from grape pomace was optimized and validated by monitoring monomeric-trimeric procyanidins. The proposed quantification method was applied to the seven medical herbs, and it proved to be a very efficient protocol for procyanidin-rich extracts analysis. In addition, the Paullinia cupana Kunth. seed was identified as a very rich source of procyanidins (about 5 mg/g dry matrix of each dimeric and about 3 mg/g dry matrix trimeric) with high antioxidant properties. The polyphenolic profile was assessed by HPLC-HESI-MS/MS analysis. The in vitro antioxidant activity was evaluated by DPPH assay to explore the antioxidant properties of the extracts, which were substantially higher in Peumus boldus Molina leaves extracts (935.23 ± 169 μmol of Trolox equivalent/g of dry weight) concerning the other matrices. Moreover, a high Pearson coefficient value was observed between the total flavonoid content (TFC) and DPPH in comparison with the total polyphenol content (TPC) and DPPH, indicating flavonoids as the principal bioactive with antioxidant activity in the extracts. Full article
(This article belongs to the Special Issue Advances in Plant Methods: Antioxidant Activity in Plant Extracts)
Show Figures

Figure 1

12 pages, 3952 KiB  
Article
2-(4-Methylthiazol-5-yl) Ethyl Nitrate Hydrochloride Ameliorates Cognitive Impairment via Modulation of Oxidative Stress and Nuclear Factor Kappa B (NF-κB) Signaling Pathway in Chronic Cerebral Hypoperfusion-Associated Spontaneously Hypertensive Rats
by Jiang Li, Shaofeng Xu, Ling Wang and Xiaoliang Wang
Antioxidants 2024, 13(5), 585; https://doi.org/10.3390/antiox13050585 - 10 May 2024
Viewed by 254
Abstract
Hypertension reduces the bioavailability of vascular nitric oxide (NO) and contributes to the onset of vascular dementia (VaD). A loss of NO bioavailability increases inflammation and oxidative stress. 2-(4-Methylthiazol-5-yl) ethyl nitrate hydrochloride (W1302) is a novel nitric oxide donor (NOD) which is undergoing [...] Read more.
Hypertension reduces the bioavailability of vascular nitric oxide (NO) and contributes to the onset of vascular dementia (VaD). A loss of NO bioavailability increases inflammation and oxidative stress. 2-(4-Methylthiazol-5-yl) ethyl nitrate hydrochloride (W1302) is a novel nitric oxide donor (NOD) which is undergoing phase I clinical trials in China for the treatment of VaD. In this study, we investigated the protective effects of W1302 in VaD rats induced by the permanent occlusion of a bilateral common carotid arteries model related to spontaneous hypertension (SHR-2VO), and we further explored the underlying mechanisms. Nimodipine was used as a positive control. Our results showed that W1302 treatment for 4 weeks (10 mg/Kg/day) exhibited stronger improvement in the spatial learning and memory deficits in SHR-2VO rats compared with nimodipine with slightly lower systolic blood pressure (SBP). Meanwhile, W1302 treatment significantly increased NO and cGMP production, restored mitochondrial membrane potential and attenuated oxidative stress as evidenced by increasing ATP production and reducing malondialdehyde (MDA) levels in the brain. Furthermore, W1302 treatment markedly inhibited the iNOS activity and decreased TNF-α expression via inhibiting the nuclear factor kappa B (NF-κB) signaling pathway. Nimodipine treatment also restored these aberrant changes, but its ATP production was weaker than that of W1302, and there was no significant effect on NO release. Taken together, W1302 exhibited beneficial effects on complications in VaD with hypertension, which is involved in suppressing oxidative damage, and the inflammatory reaction might be mediated by an increase in NO release. Therefore, W1302 has therapeutic potential for the treatment of VaD caused by chronic cerebral hypoperfusion-associated spontaneous hypertension. Full article
Show Figures

Figure 1

27 pages, 5400 KiB  
Article
Sulforaphane Exposure Prevents Cadmium-Induced Toxicity and Mitochondrial Dysfunction in the Nematode Caenorhabditis elegans by Regulating the Insulin/Insulin-like Growth Factor Signaling (IIS) Pathway
by Estefani Yaquelin Hernández-Cruz, Omar Emiliano Aparicio-Trejo, Dianelena Eugenio-Pérez, Elí Juárez-Peredo, Mariana Zurita-León, Víctor Julián Valdés and José Pedraza-Chaverri
Antioxidants 2024, 13(5), 584; https://doi.org/10.3390/antiox13050584 - 9 May 2024
Viewed by 472
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic to humans and animals. Its adverse effects have been widely associated with mitochondrial alterations. However, there are not many treatments that target mitochondria. This study aimed to evaluate the impact of sulforaphane (SFN) [...] Read more.
Cadmium (Cd) is a heavy metal that is highly toxic to humans and animals. Its adverse effects have been widely associated with mitochondrial alterations. However, there are not many treatments that target mitochondria. This study aimed to evaluate the impact of sulforaphane (SFN) pre-exposure against cadmium chloride (CdCl2)-induced toxicity and mitochondrial alterations in the nematode Caenorhabditis elegans (C. elegans), by exploring the role of the insulin/insulin-like growth factor signaling pathway (IIS). The results revealed that prior exposure to SFN protected against CdCl2-induced mortality and increased lifespan, body length, and mobility while reducing lipofuscin levels. Furthermore, SFN prevented mitochondrial alterations by increasing mitochondrial membrane potential (Δψm) and restoring mitochondrial oxygen consumption rate, thereby decreasing mitochondrial reactive oxygen species (ROS) production. The improvement in mitochondrial function was associated with increased mitochondrial mass and the involvement of the daf-16 and skn-1c genes of the IIS signaling pathway. In conclusion, exposure to SFN before exposure to CdCl2 mitigates toxic effects and mitochondrial alterations, possibly by increasing mitochondrial mass, which may be related to the regulation of the IIS pathway. These discoveries open new possibilities for developing therapies to reduce the damage caused by Cd toxicity and oxidative stress in biological systems, highlighting antioxidants with mitochondrial action as promising tools. Full article
Show Figures

Graphical abstract

32 pages, 1833 KiB  
Review
Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process
by Marco Munno, Alice Mallia, Arianna Greco, Gloria Modafferi, Cristina Banfi and Sonia Eligini
Antioxidants 2024, 13(5), 583; https://doi.org/10.3390/antiox13050583 - 9 May 2024
Viewed by 243
Abstract
Atherosclerosis is a complex condition that involves the accumulation of lipids and subsequent plaque formation in the arterial intima. There are various stimuli, cellular receptors, and pathways involved in this process, but oxidative modifications of low-density lipoprotein (ox-LDL) are particularly important in the [...] Read more.
Atherosclerosis is a complex condition that involves the accumulation of lipids and subsequent plaque formation in the arterial intima. There are various stimuli, cellular receptors, and pathways involved in this process, but oxidative modifications of low-density lipoprotein (ox-LDL) are particularly important in the onset and progression of atherosclerosis. Ox-LDLs promote foam-cell formation, activate proinflammatory pathways, and induce smooth-muscle-cell migration, apoptosis, and cell death. One of the major receptors for ox-LDL is LOX-1, which is upregulated in several cardiovascular diseases, including atherosclerosis. LOX-1 activation in endothelial cells promotes endothelial dysfunction and induces pro-atherogenic signaling, leading to plaque formation. The binding of ox-LDLs to LOX-1 increases the generation of reactive oxygen species (ROS), which can induce LOX-1 expression and oxidize LDLs, contributing to ox-LDL generation and further upregulating LOX-1 expression. This creates a vicious circle that is amplified in pathological conditions characterized by high plasma levels of LDLs. Although LOX-1 has harmful effects, the clinical significance of inhibiting this protein remains unclear. Further studies both in vitro and in vivo are needed to determine whether LOX-1 inhibition could be a potential therapeutic target to counteract the atherosclerotic process. Full article
Show Figures

Figure 1

21 pages, 2464 KiB  
Article
Dimethyl Sulfoxide (DMSO) as a Potential Source of Interference in Research Related to Sulfur Metabolism—A Preliminary Study
by Marta Kaczor-Kamińska, Kinga Kaszuba, Anna Bilska-Wilkosz, Małgorzata Iciek, Maria Wróbel and Kamil Kamiński
Antioxidants 2024, 13(5), 582; https://doi.org/10.3390/antiox13050582 - 9 May 2024
Viewed by 278
Abstract
Dimethyl sulfoxide (DMSO), an organosulfur compound, is widely used as the gold standard solvent in biological research. It is used in cell culture experiments and as a component of formulations in in vivo studies. Unfortunately, parameters related to sulfur metabolism are often not [...] Read more.
Dimethyl sulfoxide (DMSO), an organosulfur compound, is widely used as the gold standard solvent in biological research. It is used in cell culture experiments and as a component of formulations in in vivo studies. Unfortunately, parameters related to sulfur metabolism are often not taken into account when using DMSO. Therefore, in this work we aim to show that the addition of DMSO to the culture medium (even in amounts commonly considered acceptable) alters some parameters of sulfur metabolism. For this study, we used three cell lines: a commercially available Caco-2 line (HTB-37, ATCC) and two lines created as part of our early studies (likewise previously described in the literature) to investigate the anomalies of sulfur metabolism in mucopolysaccharidosis. As the negative effects of DMSO on the cell membrane are well known, additional experiments with the partial loading of DMSO into polymerosomes (poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG-PLGA) were performed to eliminate these potentially disruptive effects. The results show that DMSO is a source of interference in studies related to sulfur metabolism and that there are not just simple effects that can be corrected in the final result by subtracting control values, since complex synergisms are also observed. Full article
(This article belongs to the Special Issue Cellular Sulfur Metabolism and Signaling in Physiology and Pathology)
Show Figures

Graphical abstract

20 pages, 2906 KiB  
Article
Sustainable Utilization of Food Biowaste (Papaya Peel) Extract for Gold Nanoparticle Biosynthesis and Investigation of Its Multi-Functional Potentials
by Jayanta Kumar Patra, Han-Seung Shin, In-Jun Yang, Ly Thi Huong Nguyen and Gitishree Das
Antioxidants 2024, 13(5), 581; https://doi.org/10.3390/antiox13050581 - 9 May 2024
Viewed by 340
Abstract
Papaya contains high amounts of vitamins A, C, riboflavin, thiamine, niacin, ascorbic acid, potassium, and carotenoids. It is confirmed by several studies that all food waste parts such as the fruit peels, seeds, and leaves of papaya are potential sources of phenolic compounds, [...] Read more.
Papaya contains high amounts of vitamins A, C, riboflavin, thiamine, niacin, ascorbic acid, potassium, and carotenoids. It is confirmed by several studies that all food waste parts such as the fruit peels, seeds, and leaves of papaya are potential sources of phenolic compounds, particularly in the peel. Considering the presence of numerous bioactive compounds in papaya fruit peels, the current study reports a rapid, cheap, and environmentally friendly method for the production of gold nanoparticles (AuNPs) employing food biowaste (vegetable papaya peel extract (VPPE)) and investigated its antioxidant, antidiabetic, tyrosinase inhibition, anti-inflammatory, antibacterial, and photocatalytic degradation potentials. The phytochemical analysis gave positive results for tannins, saponins, steroids, cardiac steroidal glycoside, protein, and carbohydrates. The manufactured VPPE-AuNPs were studied by UV–Vis scan (with surface plasmon resonance of 552 nm), X-ray diffraction analysis (XRD) (with average crystallite size of 44.41 nm as per the Scherrer equation), scanning electron microscopy–energy-dispersive X-ray (SEM-EDS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), particle size, zeta potential, etc. The mean dimension of the manufactured VPPE-AuNPs is 112.2 d.nm (PDI—0.149) with a −26.1 mV zeta potential. The VPPE-AuNPs displayed a significant antioxidant effect (93.24% DPPH scavenging and 74.23% SOD inhibition at 100 µg/mL); moderate tyrosinase effect (with 30.76%); and substantial α-glucosidase (95.63%) and α-amylase effect (50.66%) at 100 µg/mL. Additionally, it was found to be very proficient in the removal of harmful methyl orange and methylene blue dyes with degradation of 34.70% at 3 h and 24.39% at 5 h, respectively. Taken altogether, the VPPE-AuNPs have been proven to possess multiple biopotential activities, which can be explored by the food, cosmetics, and biomedical industries. Full article
(This article belongs to the Special Issue Agri-Food Wastes as Natural Source of Bioactive Antioxidants Vol. III)
Show Figures

Figure 1

19 pages, 33834 KiB  
Article
Alcohol Triggers the Accumulation of Oxidatively Damaged Proteins in Neuronal Cells and Tissues
by Anusha W. Mudyanselage, Buddhika C. Wijamunige, Artur Kocoń, Ricky Turner, Denise McLean, Benito Morentin, Luis F. Callado and Wayne G. Carter
Antioxidants 2024, 13(5), 580; https://doi.org/10.3390/antiox13050580 - 8 May 2024
Viewed by 3003
Abstract
Alcohol is toxic to neurons and can trigger alcohol-related brain damage, neuronal loss, and cognitive decline. Neuronal cells may be vulnerable to alcohol toxicity and damage from oxidative stress after differentiation. To consider this further, the toxicity of alcohol to undifferentiated SH-SY5Y cells [...] Read more.
Alcohol is toxic to neurons and can trigger alcohol-related brain damage, neuronal loss, and cognitive decline. Neuronal cells may be vulnerable to alcohol toxicity and damage from oxidative stress after differentiation. To consider this further, the toxicity of alcohol to undifferentiated SH-SY5Y cells was compared with that of cells that had been acutely differentiated. Cells were exposed to alcohol over a concentration range of 0–200 mM for up to 24 h and alcohol effects on cell viability were evaluated via MTT and LDH assays. Effects on mitochondrial morphology were examined via transmission electron microscopy, and mitochondrial functionality was examined using measurements of ATP and the production of reactive oxygen species (ROS). Alcohol reduced cell viability and depleted ATP levels in a concentration- and exposure duration-dependent manner, with undifferentiated cells more vulnerable to toxicity. Alcohol exposure resulted in neurite retraction, altered mitochondrial morphology, and increased the levels of ROS in proportion to alcohol concentration; these peaked after 3 and 6 h exposures and were significantly higher in differentiated cells. Protein carbonyl content (PCC) lagged behind ROS production and peaked after 12 and 24 h, increasing in proportion to alcohol concentration, with higher levels in differentiated cells. Carbonylated proteins were characterised by their denatured molecular weights and overlapped with those from adult post-mortem brain tissue, with levels of PCC higher in alcoholic subjects than matched controls. Hence, alcohol can potentially trigger cell and tissue damage from oxidative stress and the accumulation of oxidatively damaged proteins. Full article
(This article belongs to the Special Issue Alcohol-Induced Oxidative Stress in Health and Disease)
Show Figures

Figure 1

35 pages, 1492 KiB  
Review
Microplastics and Oxidative Stress—Current Problems and Prospects
by Kornelia Kadac-Czapska, Justyna Ośko, Eliza Knez and Małgorzata Grembecka
Antioxidants 2024, 13(5), 579; https://doi.org/10.3390/antiox13050579 - 8 May 2024
Viewed by 288
Abstract
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of [...] Read more.
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of mitogen-activated protein kinase pathways, cell membrane breakages, mitochondrial dysfunction, lysosomal defects, inflammation, and apoptosis. They affect cells, tissues, organs, and overall health, potentially contributing to conditions like cancer and cardiovascular disease. They pose a significant danger due to their widespread occurrence in food. In recent years, information has emerged indicating that MPs can cause oxidative stress (OS), a known factor in accelerating the aging of organisms. This comprehensive evaluation exposed notable variability in the reported connection between MPs and OS. This work aims to provide a critical review of whether the harmfulness of plastic particles that constitute environmental contaminants may result from OS through a comprehensive analysis of recent research and existing scientific literature, as well as an assessment of the characteristics of MPs causing OS. Additionally, the article covers the analytical methodology used in this field. The conclusions of this review point to the necessity for further research into the effects of MPs on OS. Full article
Show Figures

Graphical abstract

13 pages, 670 KiB  
Article
Effects of Crude Extract of Glycyrrhiza Radix and Atractylodes macrocephala on Immune and Antioxidant Capacity of SPF White Leghorn Chickens in an Oxidative Stress Model
by Chaosheng Zhang, Shaolong Wang, Yunsheng Han, Aijuan Zheng, Guohua Liu, Kun Meng, Peilong Yang and Zhimin Chen
Antioxidants 2024, 13(5), 578; https://doi.org/10.3390/antiox13050578 - 8 May 2024
Viewed by 330
Abstract
The natural edible characteristics of Chinese herbs have led more and more people to study them as an alternative product to antibiotics. In this study, crude extracts of Glycyrrhiza radix and Atractylodes macrocephala (abbreviated as GRAM) with glycyrrhizic acid content not less than [...] Read more.
The natural edible characteristics of Chinese herbs have led more and more people to study them as an alternative product to antibiotics. In this study, crude extracts of Glycyrrhiza radix and Atractylodes macrocephala (abbreviated as GRAM) with glycyrrhizic acid content not less than 0.2 mg/g were selected to evaluate the effects of GRAM on the immune and antioxidant capacity of model animals. Thirty 21-day-old male Leghorn chickens were weighed and randomly assigned to one of three groups of ten animals each. The treatments comprised a control group (CON), in which saline was injected at day 31, day 33, and day 35, an LPS-treated group (LPS), in which LPS (0.5 mg/kg of BW) was injected at day 31, day 33, and day 35, and finally a GRAM and LPS-treated group, (G-L) in which a GRAM-treated diet (at GRAM 2 g/kg) was fed from day 21 to day 35 with LPS injection (0.5 mg/kg of BW) at day 31, day 33, and day 35. The results of diarrhea grade and serum antioxidant measurement showed that the LPS group had obvious diarrhea symptoms, serum ROS and MDA were significantly increased, and T-AOC was significantly decreased. The oxidative stress model of LPS was successfully established. The results of immune and antioxidant indexes showed that feeding GRAM significantly decreased levels of the pro-inflammatory factors TNF-α, IL-1β, and IL-6 (p < 0.05) and significantly increased levels of the anti-inflammatory factors IL-4 and IL-10 and levels of the antioxidant enzymes GSH-Px and CAT (p < 0.05). GRAM resisted the influence of LPS on ileum morphology, liver, and immune organs and maintained normal index values for ileum morphology, liver, and immune organs. In summary, this study confirmed the antidiarrheal effect of GRAM, which improved the immune and antioxidant capacity of model animals by regulating inflammatory cytokine levels and antioxidant enzyme activity in poultry. Full article
Show Figures

Figure 1

15 pages, 2711 KiB  
Article
Brucella Manipulates Host Cell Ferroptosis to Facilitate Its Intracellular Replication and Egress in RAW264.7 Macrophages
by Guangdong Zhang, Hai Hu, Yi Yin, Mingxing Tian, Zhigao Bu, Chan Ding and Shengqing Yu
Antioxidants 2024, 13(5), 577; https://doi.org/10.3390/antiox13050577 - 8 May 2024
Viewed by 333
Abstract
Brucella virulence relies on its successful intracellular life cycle. Modulating host cell death is a strategy for Brucella to survive and replicate intracellularly. Ferroptosis is a novel regulated cell death characterized by iron-triggered excessive lipid peroxidation, which has been proven to be associated [...] Read more.
Brucella virulence relies on its successful intracellular life cycle. Modulating host cell death is a strategy for Brucella to survive and replicate intracellularly. Ferroptosis is a novel regulated cell death characterized by iron-triggered excessive lipid peroxidation, which has been proven to be associated with pathogenic bacteria infection. Thus, we attempted to explore if smooth-type Brucella infection triggers host cell ferroptosis and what role it plays in Brucella infection. We assessed the effects of Brucella infection on the lactate dehydrogenase release and lipid peroxidation levels of RAW264.7 macrophages; subsequently, we determined the effect of Brucella infection on the expressions of ferroptosis defense pathways. Furthermore, we determined the role of host cell ferroptosis in the intracellular replication and egress of Brucella. The results demonstrated that Brucella M5 could induce ferroptosis of macrophages by inhibiting the GPX4-GSH axis at the late stage of infection but mitigated ferroptosis by up-regulating the GCH1-BH4 axis at the early infection stage. Moreover, elevating host cell ferroptosis decreased Brucella intracellular survival and suppressing host cell ferroptosis increased Brucella intracellular replication and egress. Collectively, Brucella may manipulate host cell ferroptosis to facilitate its intracellular replication and egress, extending our knowledge about the underlying mechanism of how Brucella completes its intracellular life cycle. Full article
Show Figures

Figure 1

13 pages, 1034 KiB  
Article
Association between Dietary Antioxidant Capacity in Midlife and Depressive Symptoms in Late Life: The Singapore Chinese Health Study
by Huiqi Li, Li-Ting Sheng, Bee Choo Tai, An Pan and Woon-Puay Koh
Antioxidants 2024, 13(5), 576; https://doi.org/10.3390/antiox13050576 - 8 May 2024
Viewed by 360
Abstract
Preclinical and limited epidemiological studies suggest that oxidative stress may be implicated in geriatric depression. Our study investigated the association between midlife dietary total antioxidant capacity (TAC) and depressive symptoms in late life among 13,712 participants in a population-based cohort of Chinese in [...] Read more.
Preclinical and limited epidemiological studies suggest that oxidative stress may be implicated in geriatric depression. Our study investigated the association between midlife dietary total antioxidant capacity (TAC) and depressive symptoms in late life among 13,712 participants in a population-based cohort of Chinese in Singapore. At baseline (1993–1998), intake of antioxidants from diet and supplements at a mean age of 52.4 years was estimated using a validated food frequency questionnaire to derive two dietary TAC indices from vitamins C and E, carotenoids and flavonoids: the Comprehensive Dietary Antioxidant Index (CDAI) and Vitamin C Equivalent Antioxidant Capacity (VCEAC). At follow-up 3 (2014–2016), when participants were at a mean age of 72.5 years, depressive symptoms were assessed using the Geriatric Depression Scale, and depression, defined as having ≥5 symptoms, was presented in 3173 (23.1%) participants. Both CDAI and VCEAC indices were inversely associated with odds of depressive symptoms in a stepwise manner: the OR (95% CI) comparing the extreme quartiles was 0.73 (0.64–0.83; Ptrend < 0.01) for the CDAI and 0.77 (0.68–0.87; Ptrend < 0.01) for the VCEAC. Specifically, higher intakes of vitamin C, carotenoids, and flavonoids were associated with a lower likelihood of depressive symptoms. Our findings support the recommendation of an antioxidant-rich diet for the prevention of depression. Full article
Show Figures

Figure 1

20 pages, 5969 KiB  
Article
Ziziphus jujuba Miller Ethanol Extract Restores Disrupted Intestinal Barrier Function via Tight Junction Recovery and Reduces Inflammation
by Ye Jin Yang, Min Jung Kim, Ho Jeong Lee, Won-Yung Lee, Ju-Hye Yang, Hun Hwan Kim, Min Sup Shim, Ji Woong Heo, Jae Dong Son, Woo H. Kim, Gon Sup Kim, Hu-Jang Lee, Young-Woo Kim, Kwang Youn Kim and Kwang Il Park
Antioxidants 2024, 13(5), 575; https://doi.org/10.3390/antiox13050575 - 7 May 2024
Viewed by 437
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by the disruption of the intestinal barrier. The intestinal barrier is maintained by tight junctions (TJs), which sustain intestinal homeostasis and prevent pathogens from entering the microbiome and mucosal tissues. Ziziphus jujuba Miller [...] Read more.
Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by the disruption of the intestinal barrier. The intestinal barrier is maintained by tight junctions (TJs), which sustain intestinal homeostasis and prevent pathogens from entering the microbiome and mucosal tissues. Ziziphus jujuba Miller (Z. jujuba) is a natural substance that has been used in traditional medicine as a therapy for a variety of diseases. However, in IBD, the efficacy of Z. jujuba is unknown. Therefore, we evaluated ZJB in Caco2 cells and a dextran sodium sulfate (DSS)-induced mouse model to demonstrate its efficacy in IBD. Z. jujuba extracts were prepared using 70% ethanol and were named ZJB. ZJB was found to be non-cytotoxic and to have excellent antioxidant effects. We confirmed its anti-inflammatory properties via the down-regulation of inflammatory factors, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). To evaluate the effects of ZJB on intestinal barrier function and TJ improvement, the trans-epithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran 4 kDa (FITC-Dextran 4) permeability were assessed. The TEER value increased by 61.389% and permeability decreased by 27.348% in the 200 μg/mL ZJB group compared with the 50 ng/mL IL-6 group after 24 h. Additionally, ZJB alleviated body weight loss, reduced the disease activity index (DAI) score, and induced colon shortening in 5% DSS-induced mice; inflammatory cytokines, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were down-regulated in the serum. TJ proteins, such as Zonula occludens (ZO)-1 and occludin, were up-regulated by ZJB in an impaired Caco2 mouse model. Additionally, according to the liquid chromatography results, in tandem with mass spectrometry (LC-MS/MS) analysis, seven active ingredients were detected in ZJB. In conclusion, ZJB down-regulated inflammatory factors, protected intestinal barrier function, and increased TJ proteins. It is thus a safe, natural substance with the potential to be used as a therapeutic agent in IBD treatment. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop