Previous Issue
Volume 12, April
 
 

Microorganisms, Volume 12, Issue 5 (May 2024) – 149 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 2891 KiB  
Article
Epidemiological Investigation of Goose Astrovirus in Hebei Province, China, 2019–2021
by Ligong Chen, Huan Cui, Jiaqi Li, Yuxin Zhang, Heng Wang, Yejin Yang, Xuejing Wang, Cheng Zhang and Juxiang Liu
Microorganisms 2024, 12(5), 990; https://doi.org/10.3390/microorganisms12050990 (registering DOI) - 14 May 2024
Viewed by 28
Abstract
The goose astrovirus (GAstV), a key pathogen causing visceral gout and high mortality in geese, has spread widely in China, with frequent outbreaks in recent years. Outbreaks and transmissions of this virus have been reported across China, causing considerable economic losses to the [...] Read more.
The goose astrovirus (GAstV), a key pathogen causing visceral gout and high mortality in geese, has spread widely in China, with frequent outbreaks in recent years. Outbreaks and transmissions of this virus have been reported across China, causing considerable economic losses to the goose industry worldwide, with losses exceeding tens of billions in China alone. However, there is still no effective prevention strategy against this virus. Therefore, continuous monitoring of the genetic diversity of dominant GAstV strains is crucial for developing targeted vaccines and appropriate therapeutics. As a crucial region for goose breeding in China, Hebei Province has previously lacked reports on the epidemiology of GAstV. Hence, investigating the epidemiology of GAstV in Hebei Province is highly important. From January 2019 to December 2021, 474 samples suspected of having a GAstV infection were collected in Hebei Province in this study. Through detailed histological observations, pathological examinations, virus isolation and identification, and genetic diversity analysis, we found that GAstV-2 has become the predominant circulating genotype. However, the presence of GAstV-1 and mixed infections cannot be ignored and should receive increased attention. The findings of this study not only deepened our understanding of GAstV in waterfowl in China but also provided scientific evidence for developing effective prevention and control measures, thereby promoting the healthy development of the goose industry in China. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

15 pages, 3047 KiB  
Article
Distinct Gastrointestinal and Reproductive Microbial Patterns in Female Holobiont of Infertility
by Ana T. Marcos, Maria J. Rus, Victoria Areal-Quecuty, Aurea Simon-Soro and José Manuel Navarro-Pando
Microorganisms 2024, 12(5), 989; https://doi.org/10.3390/microorganisms12050989 (registering DOI) - 14 May 2024
Viewed by 112
Abstract
The microbiota is in symbiosis with the human body as a holobiont. Infertility conditions affect the female reproductive tract (FRT) and its resident microbiota. However, a disturbance in homeostasis could influence the FRT and other distal body sites, such as the gastrointestinal tract [...] Read more.
The microbiota is in symbiosis with the human body as a holobiont. Infertility conditions affect the female reproductive tract (FRT) and its resident microbiota. However, a disturbance in homeostasis could influence the FRT and other distal body sites, such as the gastrointestinal tract (GIT). We included 21 patients with endometriosis and other infertility-associated diseases with clinical profiles and biological samples from the FRT (endometrium, endometrial fluid, and vagina), and GIT samples (oral and feces). We performed a 16S rRNA analysis of site-specific microbial communities and estimated diversity metrics. The study found body site-specific microbial patterns in the FRT–GIT. In both study groups, Lactobacillus was the most shared Amplicon Sequence Variant (ASV), a precise identifier of microbial sequences, between endometrial and vagina samples. However, shared Gardnerella and Enterobacteriaceae ASVs were linked to other conditions but not endometriosis. Remarkably, Haemophilus was a specific GIT-shared taxon in endometriosis cases. In conclusion, infertility influences distinctly the FRT and GIT microbiomes, with endometriosis showing unique microbial characteristics. We proposed the concept of ‘female holobiont’ as a community that comprises the host and microbes that must maintain overall homeostasis across all body sites to ensure a woman’s health. Insights into these microbial patterns not only advance our understanding of the pathophysiology of infertility but also open new avenues for developing microbe-based therapeutic interventions aimed at restoring microbial balance, thereby enhancing fertility prospects. Full article
(This article belongs to the Special Issue Gut Microbiota in DiseaseThird Edition)
Show Figures

Graphical abstract

23 pages, 674 KiB  
Review
Forensic Microbiology: When, Where and How
by Riccardo Nodari, Milena Arghittu, Paolo Bailo, Cristina Cattaneo, Roberta Creti, Francesco D’Aleo, Veroniek Saegeman, Lorenzo Franceschetti, Stefano Novati, Amparo Fernández-Rodríguez, Andrea Verzeletti, Claudio Farina and Claudio Bandi
Microorganisms 2024, 12(5), 988; https://doi.org/10.3390/microorganisms12050988 (registering DOI) - 14 May 2024
Viewed by 123
Abstract
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application [...] Read more.
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application of medical practices, such as transplants, which require immunosuppressive treatments, and the growing demand for prosthetic installations, associated with an increasing threat of antimicrobial resistance, have led to a rise in the number of infections of iatrogenic origin, which entails important medico-legal issues. On the other hand, the possibility of detecting minimal amounts of microorganisms, even in the form of residual traces (e.g., their nucleic acids), and of obtaining gene and genomic sequences at contained costs, has made it possible to ask new questions of whether cases of death or illness might have a microbiological origin, with the possibility of also tracing the origin of the microorganisms involved and reconstructing the chain of contagion. In addition to the more obvious applications, such as those mentioned above related to the origin of iatrogenic infections, or to possible cases of infections not properly diagnosed and treated, a less obvious application of forensic microbiology concerns its use in cases of violence or violent death, where the characterization of the microorganisms can contribute to the reconstruction of the case. Finally, paleomicrobiology, e.g., the reconstruction and characterization of microorganisms in historical or even archaeological remnants, can be considered as a sister discipline of forensic microbiology. In this article, we will review these different aspects and applications of forensic microbiology. Full article
(This article belongs to the Special Issue Forensic and Post-Mortem Microbiology)
Show Figures

Figure 1

16 pages, 265 KiB  
Article
Infective Endocarditis—Characteristics and Prognosis According to the Affected Valves
by Bistra Dobreva-Yatseva, Fedya Nikolov, Ralitsa Raycheva and Mariya Tokmakova
Microorganisms 2024, 12(5), 987; https://doi.org/10.3390/microorganisms12050987 (registering DOI) - 14 May 2024
Viewed by 90
Abstract
Background: Infective endocarditis (IE) continues to be a disease with high mortality despite medical advances. Objective: The objective of this study was to investigate the characteristics and prognosis of IE according to the affected valves. Materials and methods: This study was retrospective and [...] Read more.
Background: Infective endocarditis (IE) continues to be a disease with high mortality despite medical advances. Objective: The objective of this study was to investigate the characteristics and prognosis of IE according to the affected valves. Materials and methods: This study was retrospective and single-centered, and it included 270 patients with a diagnosis of IE, for the period 2005–2021, who received treatment at the University Hospital “St. Georgi” in Plovdiv, Bulgaria. Results: Single-valve IE (SIE) was found in 82.6% (n-223), multivalvular IE (MIE) in 16.66% (n = 45) and device IE (CDRIE) in 0.74% (n = 2) of patients. The most commonly affected valve was the aortic valve, in 44.8% (n = 121). The predominant multivalvular involvement was aortic–mitral valves (AV-MV) (13.7%, n = 37). The patients with tricuspid valve (TV) IE were significantly younger, at 39 (30) years, and were more frequently male (80.8%). Mortality was higher in MIE than in SIE (31.1% vs. 23.8%) and was the highest in multivalve aortic–tricuspid (AV-TV) IE (75%). Early surgery was performed most in AV-MV IE, in 29.7% (n = 11). The Charlson comorbidity index (CCI) was significantly higher in MV 4 (4) and AV 3 (3) vs. TV IE 1 (5) (p = 0.048 and p = 0.011, respectively). Septic shock occurred most frequently in AV-TV involvement (75%; p = 0.0001). The most common causative agents were of the Staphylococcus group. Staphylococcus aureus more often affected TV alone (46.2%, n = 124) vs. AV (9.9%, n = 14; p = 0.0001) and vs. MV (22.6%, n = 17; p = 0.022); Staphylococcus coagulase-negative (CNG) was the prevalent cause of MV IE (22.7%, n = 17) vs. AV-MV (2.7%, n = 1; p = 0.007). Streptococci were represented in a low percentage and only in left-sided IE, more frequently in AV-MV (18.9%, n = 7) vs. AV (6.6%, n = 8; p = 0.025). Conclusions: The aortic valve is the most frequently affected valve, as single-valve IE or as multivalve AV-MV, with the predominant causative agents being of the Staphylococcus group. AV-TV IE has the worst prognosis, with the most common complication of septic shock and the highest in-hospital mortality. Full article
(This article belongs to the Special Issue The Infective Endocarditis)
19 pages, 13091 KiB  
Article
Comparative Genomics Unveils Functional Diversity, Pangenome Openness, and Underlying Biological Drivers among Bacillus subtilis Group
by Taiquan Wang, Yiling Shi, Mengzhuo Zheng and Jinshui Zheng
Microorganisms 2024, 12(5), 986; https://doi.org/10.3390/microorganisms12050986 (registering DOI) - 14 May 2024
Viewed by 131
Abstract
The Bacillus subtilis group (Bs group), with Bacillus subtilis as its core species, holds significant research and economic value in various fields, including science, industrial production, food, and pharmaceuticals. However, most studies have been confined to comparative genomics analyses and exploration within individual [...] Read more.
The Bacillus subtilis group (Bs group), with Bacillus subtilis as its core species, holds significant research and economic value in various fields, including science, industrial production, food, and pharmaceuticals. However, most studies have been confined to comparative genomics analyses and exploration within individual genomes at the level of species, with few conducted within groups across different species. This study focused on Bacillus subtilis, the model of Gram-positive bacteria, and 14 other species with significant research value, employing comparative pangenomics as well as population enrichment analysis to ascertain the functional enrichment and diversity. Through the quantification of pangenome openness, this work revealed the underlying biological drivers and significant correlation between pangenome openness and various factors, including the distribution of toxin–antitoxin- and integrase-related genes, as well as the number of endonucleases, recombinases, repair system-related genes, prophages, integrases, and transfer mobile elements. Furthermore, the functional enrichment results indicated the potential for secondary metabolite, probiotic, and antibiotic exploration in Bacillus licheniformis, Bacillus paralicheniformis, and Bacillus spizizenii, respectively. In general, this work systematically exposed the quantification of pangenome openness, biological drivers, the pivotal role of genomic instability factors, and mobile elements, providing targeted exploration guidance for the Bs group. Full article
Show Figures

Figure 1

16 pages, 12242 KiB  
Article
Veratryl Alcohol Attenuates the Virulence and Pathogenicity of Pseudomonas aeruginosa Mainly via Targeting las Quorum-Sensing System
by Songzhe Fu, Wenxu Song, Xiaofeng Han, Lin Chen and Lixin Shen
Microorganisms 2024, 12(5), 985; https://doi.org/10.3390/microorganisms12050985 (registering DOI) - 14 May 2024
Viewed by 101
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that usually causes chronic infections and even death in patients. The treatment of P. aeruginosa infection has become more challenging due to the prevalence of antibiotic resistance and the slow pace of new antibiotic development. Therefore, it [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen that usually causes chronic infections and even death in patients. The treatment of P. aeruginosa infection has become more challenging due to the prevalence of antibiotic resistance and the slow pace of new antibiotic development. Therefore, it is essential to explore non-antibiotic methods. A new strategy involves screening for drugs that target the quorum-sensing (QS) system. The QS system regulates the infection and drug resistance in P. aeruginosa. In this study, veratryl alcohol (VA) was found as an effective QS inhibitor (QSI). It effectively suppressed the expression of QS-related genes and the subsequent production of virulence factors under the control of QS including elastase, protease, pyocyanin and rhamnolipid at sub-inhibitory concentrations. In addition, motility activity and biofilm formation, which were correlated with the infection of P. aeruginosa, were also suppressed by VA. In vivo experiments demonstrated that VA could weaken the pathogenicity of P. aeruginosa in Chinese cabbage, Drosophila melanogaster, and Caenorhabditis elegans infection models. Molecular docking, combined with QS quintuple mutant infection analysis, identified that the mechanism of VA could target the LasR protein of the las system mainly. Moreover, VA increased the susceptibility of P. aeruginosa to conventional antibiotics of tobramycin, kanamycin and gentamicin. The results firstly demonstrate that VA is a promising QSI to treat infections caused by P. aeruginosa. Full article
(This article belongs to the Special Issue Advances in Novel Antibacterial Agents)
Show Figures

Figure 1

6 pages, 189 KiB  
Communication
Antibiotic Resistance Profiles in Eye Infections: A Local Concern with a Retrospective Focus on a Large Hospital in Northern Italy
by Lorenzo Drago, Vincenzo Minasi, Andrea Lembo, Angela Uslenghi, Sofia Benedetti, Matteo Covi, Paolo Nucci and Loredana Deflorio
Microorganisms 2024, 12(5), 984; https://doi.org/10.3390/microorganisms12050984 (registering DOI) - 14 May 2024
Viewed by 119
Abstract
The emergence of antibiotic resistance poses a significant threat to public health worldwide, affecting various medical fields, including ophthalmology. Eye infections, ranging from conjunctivitis to more severe conditions like keratitis, are commonly treated with antibiotics. However, the misuse and overuse of these drugs [...] Read more.
The emergence of antibiotic resistance poses a significant threat to public health worldwide, affecting various medical fields, including ophthalmology. Eye infections, ranging from conjunctivitis to more severe conditions like keratitis, are commonly treated with antibiotics. However, the misuse and overuse of these drugs have led to the development of resistant strains of bacteria, allowing traditional treatments ineffective. This paper aims to examine the current situation of antibiotic resistance in eye infections globally, with a specific focus on a large group of hospitals located in Milan (Italy) with considerable experience in cataract and cornea surgery as well as in retinopathy. The results of the study show the prevalence of Gram-positives in the tested samples and a low resistance of fluoroquinolones and glycopeptides. The results also highlight the need to implement sample collection methods for ocular infections, as the quantity of positive samples is rather low compared to the total number of samples. In conclusion, the study, although with limited data, shows that resistance to aminoglycosides and cephalosporins is a situation to be monitored. These data also show the critical need to improve and guide the biological sample collection modalities in order to make the diagnosis more reliable. Full article
(This article belongs to the Special Issue Advances in Medical Microbiology)
11 pages, 2191 KiB  
Article
A Luciferase Immunosorbent Assay Based on Attachment Glycoprotein for the Rapid and Easy Detection of Nipah Virus IgG Antibodies
by Xinyue Li, Yuting Fang, Xinyi Huang, Yongkun Zhao and Chengsong Wan
Microorganisms 2024, 12(5), 983; https://doi.org/10.3390/microorganisms12050983 (registering DOI) - 14 May 2024
Viewed by 180
Abstract
Nipah virus (NiV) is a virulent zoonotic disease whose natural host is the fruit bat (Pteropus medius), which can coexist with and transmit the virus. Due to its high pathogenicity, wide host range, and pandemic potential, establishing a sensitive, specific, and [...] Read more.
Nipah virus (NiV) is a virulent zoonotic disease whose natural host is the fruit bat (Pteropus medius), which can coexist with and transmit the virus. Due to its high pathogenicity, wide host range, and pandemic potential, establishing a sensitive, specific, and rapid diagnostic method for NiV is key to preventing and controlling its spread and any outbreaks. Here, we established a luciferase immunosorbent assay (LISA) based on the NiV attachment glycoprotein (G) to detect NiV-specific immunoglobulin G by expressing a fusion protein of nanoluciferase (NanoLuc) and the target antigen. Sensitivity analysis was performed and compared to an indirect enzyme-linked immunosorbent assay (ELISA), and specificity and cross-reactivity assessments were performed using NiV-positive horse serum and Ebola virus-, Crimean–Congo hemorrhagic fever virus-, and West Nile virus-positive horse sera. The optimal structural domain for NiV detection was located within amino acids 176–602 of the NiV G protein head domain. Moreover, the LISA showed at least fourfold more sensitivity than the indirect ELISA, and the cross-reactivity results suggested that the LISA had good specificity and was capable of detecting NiV-specific immunoglobulin G in both mouse and horse serum. In conclusion, the establishment of a rapid, simple NiV LISA using the G protein head domain provides a resource for NiV monitoring. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

13 pages, 1592 KiB  
Article
Machine Learning-Based Identification of Mating Type and Metalaxyl Response in Phytophthora infestans Using SSR Markers
by Collins A. Agho, Jadwiga Śliwka, Helina Nassar, Ülo Niinemets and Eve Runno-Paurson
Microorganisms 2024, 12(5), 982; https://doi.org/10.3390/microorganisms12050982 (registering DOI) - 14 May 2024
Viewed by 239
Abstract
Phytophthora infestans is the causal agent of late blight in potato. The occurrence of P. infestans with both A1 and A2 mating types in the field may result in sexual reproduction and the generation of recombinant strains. Such strains with new combinations of [...] Read more.
Phytophthora infestans is the causal agent of late blight in potato. The occurrence of P. infestans with both A1 and A2 mating types in the field may result in sexual reproduction and the generation of recombinant strains. Such strains with new combinations of traits can be highly aggressive, resistant to fungicides, and can make the disease difficult to control in the field. Metalaxyl-resistant isolates are now more prevalent in potato fields. Understanding the genetic structure and rapid identification of mating types and metalaxyl response of P. infestans in the field is a prerequisite for effective late blight disease monitoring and management. Molecular and phenotypic assays involving molecular and phenotypic markers such as mating types and metalaxyl response are typically conducted separately in the studies of the genotypic and phenotypic diversity of P. infestans. As a result, there is a pressing need to reduce the experimental workload and more efficiently assess the aggressiveness of different strains. We think that employing genetic markers to not only estimate genotypic diversity but also to identify the mating type and fungicide response using machine learning techniques can guide and speed up the decision-making process in late blight disease management, especially when the mating type and metalaxyl resistance data are not available. This technique can also be applied to determine these phenotypic traits for dead isolates. In this study, over 600 P. infestans isolates from different populations—Estonia, Pskov region, and Poland—were classified for mating types and metalaxyl response using machine learning techniques based on simple sequence repeat (SSR) markers. For both traits, random forest and the support vector machine demonstrated good accuracy of over 70%, compared to the decision tree and artificial neural network models whose accuracy was lower. There were also associations (p < 0.05) between the traits and some of the alleles detected, but machine learning prediction techniques based on multilocus SSR genotypes offered better prediction accuracy. Full article
(This article belongs to the Section Systems Microbiology)
Show Figures

Figure 1

10 pages, 1087 KiB  
Communication
Intestinal Emphysema and Gut Bacterial Microbiota Composition
by Jasmine Hattab, Alfonso Rosamilia, Chiara Guarnieri, Domenico Sciota, Giuseppe Marruchella and Pietro Giorgio Tiscar
Microorganisms 2024, 12(5), 981; https://doi.org/10.3390/microorganisms12050981 (registering DOI) - 13 May 2024
Viewed by 180
Abstract
Pneumatosis cystoides intestinalis, or intestinal emphysema, is a condition characterized by the presence of multiple cystic structures within the gut wall and on the serosal surface of the intestine. Intestinal emphysema represents an accidental finding in swine, although it can be clinically [...] Read more.
Pneumatosis cystoides intestinalis, or intestinal emphysema, is a condition characterized by the presence of multiple cystic structures within the gut wall and on the serosal surface of the intestine. Intestinal emphysema represents an accidental finding in swine, although it can be clinically relevant in humans. Its etiology is unknown, and many theories have been proposed. Among them, a bacterial etiology is considered the most likely. Therefore, in this study, the V3-V4 region of the 16S rRNA gene was sequenced from 19 swine ileal tracts, 12 with intestinal emphysema and 7 without lesions, to detect a possible bacterial agent. In parallel, prevalence was estimated. Escherichia–Shigella (13.15%), Clostridium_sensu_stricto_1; s__uncultured_bacterium (7.09%), and Fusobacterium; s_uncultured bacterium (6.60%) were the most abundant species identified. No statistically relevant differences were observed between the pathological and physiological groups. Prevalence ranged from 1.25 to 5.12% depending on the batch. Our results suggest that the gut wall bacterial microbiota greatly match the normal gut microbiota, and that the etiological agent of intestinal emphysema may be (1) undetectable due to the chronicity of the lesions, (2) not considered statistically relevant in comparing the two groups (p < 0.05) and likewise in causing lesions, and (3) undetectable due to contamination. Regarding prevalence, the condition is moderately frequent. Full article
(This article belongs to the Special Issue State-of-the-Art of Gut Microbiota in Italy (2023, 2024))
17 pages, 2750 KiB  
Article
Autoprobiotics in the Treatment of Patients with Colorectal Cancer in the Early Postoperative Period
by Elena Ermolenko, Natalia Baryshnikova, Galina Alekhina, Alexander Zakharenko, Oleg Ten, Victor Kashchenko, Nadezhda Novikova, Olga Gushchina, Timofey Ovchinnikov, Anastasia Morozova, Anastasia Ilina, Alena Karaseva, Anna Tsapieva, Nikita Gladyshev, Alexander Dmitriev and Alexander Suvorov
Microorganisms 2024, 12(5), 980; https://doi.org/10.3390/microorganisms12050980 (registering DOI) - 13 May 2024
Viewed by 250
Abstract
Despite great advances in the treatment of oncological diseases, the development of medical technologies to prevent or reduce complications of therapy, in particular, those associated with surgery and the introduction of antibiotics, remains relevant. The aim of this study is to evaluate the [...] Read more.
Despite great advances in the treatment of oncological diseases, the development of medical technologies to prevent or reduce complications of therapy, in particular, those associated with surgery and the introduction of antibiotics, remains relevant. The aim of this study is to evaluate the effectiveness of the use of autoprobiotics based on indigenous non-pathogenic strains of Enterococcus faecium and Enterococcus hirae as a personalized functional food product (PFFP) in the complex therapy of colorectal cancer (CRC) in the early postoperative period. A total of 36 patients diagnosed with CRC were enrolled in the study. Study group A comprised 24 CRC patients who received autoprobiotic therapy in the early postoperative period, while the control group C included 12 CRC patients without autoprobiotic therapy. Prior to surgery and between days 14 and 16 post-surgery, comprehensive evaluations were conducted on all patients, encompassing the following: stool and gastroenterological complaints analysis, examination of the gut microbiota (bacteriological study, quantitative polymerase chain reaction, metagenome analysis), and analysis of interleukins in the serum. Results: The use of autoprobiotics led to a decrease in dyspeptic complaints after surgery. It was also associated with the absence of postoperative complications, did not cause any side effects, and led to a decrease in the level of pro-inflammatory cytokines (IL-6 and IL-18) in the blood serum. The use of autoprobiotics led to positive changes in the structure of escherichia and enterococci populations, the elimination of Parvomonas micra and Fusobacterium nucleatum, and a decrease in the quantitative content of Clostridium perfringens and Akkermansia muciniphila. Metagenomic analysis (16S rRNA) revealed an increase in alpha diversity. Conclusion: The introduction of autoprobiotics in the postoperative period is a highly effective and safe approach in the complex treatment of CRC. Future studies will allow the discovery of additional fine mechanisms of autoprobiotic therapy and its impact on the digestive, immune, endocrine, and neural systems. Full article
(This article belongs to the Special Issue Novel Strategies in the Study of the Human Gut Microbiota 2.0)
Show Figures

Figure 1

25 pages, 4644 KiB  
Article
Introduction of Cellulolytic Bacterium Bacillus velezensis Z2.6 and Its Cellulase Production Optimization
by Zhi Cai, Yi Wang, Yang You, Nan Yang, Shanshan Lu, Jianheng Xue, Xiang Xing, Sha Sha and Lihua Zhao
Microorganisms 2024, 12(5), 979; https://doi.org/10.3390/microorganisms12050979 (registering DOI) - 13 May 2024
Viewed by 161
Abstract
Enzyme-production microorganisms typically occupy a dominant position in composting, where cellulolytic microorganisms actively engage in the breakdown of lignocellulose. Exploring strains with high yields of cellulose-degrading enzymes holds substantial significance for the industrial production of related enzymes and the advancement of clean bioenergy. [...] Read more.
Enzyme-production microorganisms typically occupy a dominant position in composting, where cellulolytic microorganisms actively engage in the breakdown of lignocellulose. Exploring strains with high yields of cellulose-degrading enzymes holds substantial significance for the industrial production of related enzymes and the advancement of clean bioenergy. This study was inclined to screen cellulolytic bacteria, conduct genome analysis, mine cellulase-related genes, and optimize cellulase production. The potential carboxymethylcellulose-hydrolyzing bacterial strain Z2.6 was isolated from the maturation phase of pig manure-based compost with algae residuals as the feedstock and identified as Bacillus velezensis. In the draft genome of strain Z2.6, 31 related cellulolytic genes were annotated by the CAZy database, and further validation by cloning documented the existence of an endo-1,4-β-D-glucanase (EC 3.2.1.4) belonging to the GH5 family and a β-glucosidase (EC 3.2.1.21) belonging to the GH1 family, which are predominant types of cellulases. Through the exploration of ten factors in fermentation medium with Plackett–Burman and Box–Behnken design methodologies, maximum cellulase activity was predicted to reach 2.98 U/mL theoretically. The optimal conditions achieving this response were determined as 1.09% CMC-Na, 2.30% salinity, and 1.23% tryptone. Validation under these specified conditions yielded a cellulose activity of 3.02 U/mL, demonstrating a 3.43-fold degree of optimization. In conclusion, this comprehensive study underscored the significant capabilities of strain Z2.6 in lignocellulolytic saccharification and its potentialities for future in-depth exploration in biomass conversion. Full article
(This article belongs to the Section Microbial Biotechnology)
16 pages, 9862 KiB  
Article
Metagenomic and Antibiotic Resistance Analysis of the Gut Microbiota in Larus relictus and Anatidae Species Inhabiting the Honghaizi Wetland of Ordos, Inner Mongolia, from 2021 to 2023
by Ronglei Huang, Xue Ji, Lingwei Zhu, Chengyang Zhang, Tingting Luo, Bing Liang, Bowen Jiang, Ang Zhou, Chongtao Du and Yang Sun
Microorganisms 2024, 12(5), 978; https://doi.org/10.3390/microorganisms12050978 (registering DOI) - 13 May 2024
Viewed by 232
Abstract
Gut microbes thrive by utilising host energy and, in return, provide valuable benefits, akin to a symbiotic relationship. Here, metagenomic sequencing was performed to characterise and compare the community composition, diversity and antibiotic resistance of the gut microbiota of Relict gull (Larus [...] Read more.
Gut microbes thrive by utilising host energy and, in return, provide valuable benefits, akin to a symbiotic relationship. Here, metagenomic sequencing was performed to characterise and compare the community composition, diversity and antibiotic resistance of the gut microbiota of Relict gull (Larus relictus) and Anatidae species. Alpha diversity analysis revealed that the intestinal microbial richness of L. relictus was significantly lower than that of Anatidae, with distinct differences observed in microbial composition. Notably, the intestines of L. relictus harboured more pathogenic bacteria such as clostridium, which may contribute to the decline in their population and endangered status. A total of 117 strains of Escherichia coli were isolated, with 90.60% exhibiting full susceptibility to 21 antibiotics, while 25.3% exhibited significant biofilm formation. Comprehensive Antibiotic Resistance Database data indicated that glycopeptide resistance genes were the most prevalent type carried by migratory birds, alongside quinolone, tetracycline and lincosamide resistance genes. The abundance of resistance genes carried by migratory birds decreased over time. This metagenomic analysis provides valuable insights into the intestinal microbial composition of these wild bird species, offering important guidance for their conservation efforts, particularly for L. relictus, and contributing to our understanding of pathogen spread and antibiotic-resistant bacteria. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

18 pages, 3633 KiB  
Article
Spatial Distribution Patterns and Assembly Processes of Abundant and Rare Fungal Communities in Pinus sylvestris var. mongolica Forests
by Reyila Mumin, Dan-Dan Wang, Wen Zhao, Kai-Chuan Huang, Jun-Ning Li, Yi-Fei Sun and Bao-Kai Cui
Microorganisms 2024, 12(5), 977; https://doi.org/10.3390/microorganisms12050977 (registering DOI) - 13 May 2024
Viewed by 190
Abstract
Revealing the biogeography and community assembly mechanisms of soil microorganisms is crucial in comprehending the diversity and maintenance of Pinus sylvestris var. mongolica forests. Here, we used high-throughput sequencing techniques and null model analysis to explore the distribution patterns and assembly processes of [...] Read more.
Revealing the biogeography and community assembly mechanisms of soil microorganisms is crucial in comprehending the diversity and maintenance of Pinus sylvestris var. mongolica forests. Here, we used high-throughput sequencing techniques and null model analysis to explore the distribution patterns and assembly processes of abundant, rare, and total fungal communities in P. sylvestris var. mongolica forests based on a large-scale soil survey across northern China. Compared to the abundant and total taxa, the diversity and composition of rare taxa were found to be more strongly influenced by regional changes and environmental factors. At the level of class, abundant and total taxa were dominated by Agaricomycetes and Leotiomycetes, while Agaricomycetes and Sordariomycetes were dominant in the rare taxa. In the functional guilds, symbiotrophic fungi were advantaged in the abundant and total taxa, and saprotrophic fungi were advantaged in the rare taxa. The null model revealed that the abundant, rare, and total taxa were mainly governed by stochastic processes. However, rare taxa were more influenced by deterministic processes. Precipitation and temperature were the key drivers in regulating the balance between stochastic and deterministic processes. This study provides new insights into both the biogeographical patterns and assembly processes of soil fungi in P. sylvestris var. mongolica forests. Full article
(This article belongs to the Special Issue Soil Microbial Communities under Environmental Change)
Show Figures

Figure 1

15 pages, 2374 KiB  
Article
The Effect of Low HBV-DNA Viral Load on Recurrence in Hepatocellular Carcinoma Patients Who Underwent Primary Locoregional Treatment and the Development of a Nomogram Prediction Model
by Yiqi Xiong, Ziling Wang, Jiajun Liu, Kang Li and Yonghong Zhang
Microorganisms 2024, 12(5), 976; https://doi.org/10.3390/microorganisms12050976 (registering DOI) - 13 May 2024
Viewed by 191
Abstract
(1) Background: HBV-DNA is an essential clinical indicator of primary hepatocellular carcinoma (HCC) prognosis. Our study aimed to investigate the prognostic implication of a low load of HBV-DNA in HCC patients who underwent local treatment. Additionally, we developed and validated a nomogram to [...] Read more.
(1) Background: HBV-DNA is an essential clinical indicator of primary hepatocellular carcinoma (HCC) prognosis. Our study aimed to investigate the prognostic implication of a low load of HBV-DNA in HCC patients who underwent local treatment. Additionally, we developed and validated a nomogram to predict the recurrence of patients with low (20–100 IU/mL) viral loads (L-VL). (2) Methods: A total of 475 HBV-HCC patients were enrolled, including 403 L-VL patients and 72 patients with very low (<20 IU/mL) viral loads (VL-VL). L-VL HCC patients were randomly divided into a training set (N = 282) and a validation set (N = 121) at a ratio of 7:3. Utilizing the Lasso–Cox regression analysis, we identified independent risk factors for constructing a nomogram. (3) Results: L-VL patients had significantly shorter RFS than VL-VL patients (38.2 m vs. 23.4 m, p = 0.024). The content of the nomogram included gender, BCLC stage, Glob, and MLR. The C-index (0.682 vs. 0.609); 1-, 3-, and 5-year AUCs (0.729, 0.784, and 0.783, vs. 0.631, 0.634, the 0.665); calibration curves; and decision curve analysis (DCA) curves of the training and validation cohorts proved the excellent predictive performance of the nomogram. There was a statistically significant difference in RFS between the low-, immediate-, and high-risk groups both in the training and validation cohorts (p < 0.001); (4) Conclusions: Patients with L-VL had a worse prognosis. The nomogram developed and validated in this study has the advantage of predicting patients with L-VL. Full article
(This article belongs to the Special Issue Research on Relevant Clinical Infections)
Show Figures

Figure 1

6 pages, 202 KiB  
Communication
Analysis of Cell Immunity for Children Infected with SARS-CoV-2 and Those Vaccinated against SARS-CoV-2 Using T-SPOT®.COVID
by Tomohiro Oishi, Yuto Yasui, Atsushi Kato, Satoko Ogita, Takahiro Eitoku, Hideo Enoki and Takashi Nakano
Microorganisms 2024, 12(5), 975; https://doi.org/10.3390/microorganisms12050975 (registering DOI) - 13 May 2024
Viewed by 295
Abstract
Cellular immunity is critical for the regulation of viral diseases, including coronavirus disease 2019 (COVID-19), and is generally considered immature in childhood. However, the details of cellular immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among children are unclear. We assessed [...] Read more.
Cellular immunity is critical for the regulation of viral diseases, including coronavirus disease 2019 (COVID-19), and is generally considered immature in childhood. However, the details of cellular immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among children are unclear. We assessed cellular immunity in eight children post-vaccination against SARS-CoV-2 and 11 children after SARS-CoV-2 infection using the T-SPOT®.COVID assay for the spike (S) and nucleocapsid (N) proteins. In the vaccinated group, the T-SPOT®.COVID assay for the S protein yielded positive results in seven children. In the post-infection group, the assay for the N protein was positive for 5 of 11 children, with 3 of these 5 children requiring hospitalization, including 2 who needed mechanical ventilation. The T-SPOT®.COVID assay is thus valuable for assessing cellular immunity against SARS-CoV-2, and most children infected with SARS-CoV-2 may not develop such immunity unless the disease severity is significant. Full article
(This article belongs to the Special Issue Immune Modulation to SARS-CoV-2 Vaccination and Infection)
10 pages, 898 KiB  
Communication
Association of the Reduced Levels of Monocyte Chemoattractant Protein-1 with Herpes Zoster in Rheumatoid Arthritis Patients Treated with Janus Kinase Inhibitors in a Single-Center Cohort
by Po-Ku Chen, Yi-Ming Chen, Hsin-Hua Chen, Tsai-Ling Liao, Shih-Hsin Chang, Kai-Jieh Yeo, Po-Hao Huang and Der-Yuan Chen
Microorganisms 2024, 12(5), 974; https://doi.org/10.3390/microorganisms12050974 (registering DOI) - 12 May 2024
Viewed by 278
Abstract
Anti-interferon (IFN)-γ autoantibodies are linked to varicella zoster virus (VZV) infection. Given the elevated risks of herpes zoster (HZ) in rheumatoid arthritis (RA) patients treated with Janus kinase inhibitors (JAKis), we aimed to examine the relationship between anti-IFN-γ autoantibodies with HZ development in [...] Read more.
Anti-interferon (IFN)-γ autoantibodies are linked to varicella zoster virus (VZV) infection. Given the elevated risks of herpes zoster (HZ) in rheumatoid arthritis (RA) patients treated with Janus kinase inhibitors (JAKis), we aimed to examine the relationship between anti-IFN-γ autoantibodies with HZ development in JAKi-treated patients. Serum titers of anti-IFN-γ autoantibodies, plasma levels of IFN-γ, monocyte chemoattractant protein-1 (MCP-1), and IFN-γ-inducible protein-10 (IP-10) were measured by ELISA. Among the 66 enrolled RA patients, 24 developed new-onset HZ. Significantly lower MCP-1 levels were observed in patients with HZ compared to those without (median, 98.21 pg/mL, interquartile range (IQR) 77.63–150.30 pg/mL versus 142.3 pg/mL, IQR 106.7–175.6 pg/mL, p < 0.05). There was no significant difference in anti-IFN-γ titers, IFN-γ levels, or IP-10 levels between patients with and without HZ. Three of 24 patients with HZ had severe HZ with multi-dermatomal involvement. Anti-IFN-γ titers were significantly higher in patients with severe HZ than in those with non-severe HZ (median 24.8 ng/mL, IQR 21.0–38.2 ng/mL versus 10.5 ng/mL, IQR 9.9–15.0 ng/mL, p < 0.005). Our results suggest an association between reduced MCP-1 levels and HZ development in JAKi-treated RA patients. High-titer anti-IFN-γ autoantibodies may be related to severe HZ in these patients. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

19 pages, 3325 KiB  
Article
Identification of Critical Immune Regulators and Potential Interactions of IL-26 in Riemerella anatipestifer-Infected Ducks by Transcriptome Analysis and Profiling
by Paula Leona T. Cammayo-Fletcher, Rochelle A. Flores, Binh T. Nguyen, Bujinlkham Altanzul, Cherry P. Fernandez-Colorado, Woo H. Kim, Rajkumari Mandakini Devi, Suk Kim and Wongi Min
Microorganisms 2024, 12(5), 973; https://doi.org/10.3390/microorganisms12050973 (registering DOI) - 12 May 2024
Viewed by 351
Abstract
Riemerella anatipestifer (RA) is an economically important pathogen in the duck industry worldwide that causes high mortality and morbidity in infected birds. We previously found that upregulated IL-17A expression in ducks infected with RA participates in the pathogenesis of the disease, but this [...] Read more.
Riemerella anatipestifer (RA) is an economically important pathogen in the duck industry worldwide that causes high mortality and morbidity in infected birds. We previously found that upregulated IL-17A expression in ducks infected with RA participates in the pathogenesis of the disease, but this mechanism is not linked to IL-23, which primarily promotes Th17 cell differentiation and proliferation. RNA sequencing analysis was used in this study to investigate other mechanisms of IL-17A upregulation in RA infection. A possible interaction of IL-26 and IL-17 was discovered, highlighting the potential of IL-26 as a novel upstream cytokine that can regulate IL-17A during RA infection. Additionally, this process identified several important pathways and genes related to the complex networks and potential regulation of the host immune response in RA-infected ducks. Collectively, these findings not only serve as a roadmap for our understanding of RA infection and the development of new immunotherapeutic approaches for this disease, but they also provide an opportunity to understand the immune system of ducks. Full article
(This article belongs to the Section Veterinary Microbiology)
13 pages, 1722 KiB  
Article
Ironing out Persisters? Revisiting the Iron Chelation Strategy to Target Planktonic Bacterial Persisters Harboured in Carbapenem-Resistant Escherichia coli
by Jia Hao Yeo, Nasren Begam, Wan Ting Leow, Jia Xuan Goh, Yang Zhong, Yiying Cai and Andrea Lay-Hoon Kwa
Microorganisms 2024, 12(5), 972; https://doi.org/10.3390/microorganisms12050972 (registering DOI) - 12 May 2024
Viewed by 361
Abstract
Antibiotic resistance is a global health crisis. Notably, carbapenem-resistant Enterobacterales (CRE) pose a significant clinical challenge due to the limited effective treatment options. This problem is exacerbated by persisters that develop upon antibiotic exposure. Bacteria persisters can tolerate high antibiotic doses and can [...] Read more.
Antibiotic resistance is a global health crisis. Notably, carbapenem-resistant Enterobacterales (CRE) pose a significant clinical challenge due to the limited effective treatment options. This problem is exacerbated by persisters that develop upon antibiotic exposure. Bacteria persisters can tolerate high antibiotic doses and can cause recalcitrant infections, potentially developing further antibiotic resistance. Iron is a critical micronutrient for survival. We aimed to evaluate the utility of iron chelators, alone and in combination with antibiotics, in managing persisters. We hypothesized that iron chelators eradicate CRE persisters in vitro, when administered in combination with antibiotics. Our screening revealed three clinical isolates with bacteria persisters that resuscitated upon antibiotic removal. These isolates were treated with both meropenem and an iron chelator (deferoxamine mesylate, deferiprone or dexrazoxane) over 24 h. Against our hypothesis, bacteria persisters survived and resuscitated upon withdrawing both the antibiotic and iron chelator. Pursuing our aim, we next hypothesized that iron chelation is feasible as a post-antibiotic treatment in managing and suppressing persisters’ resuscitation. We exposed bacteria persisters to an iron chelator without antibiotics. Flow cytometric assessments revealed that iron chelators are inconsistent in suppressing persister resuscitation. Collectively, these results suggest that the iron chelation strategy may not be useful as an antibiotic adjunct to target planktonic bacteria persisters. Full article
(This article belongs to the Special Issue Bacterial Antibiotic Resistance)
Show Figures

Figure 1

29 pages, 7312 KiB  
Article
Long Non-Coding RNA Analysis: Severe Pathogenicity in Chicken Embryonic Visceral Tissues Infected with Highly Virulent Newcastle Disease Virus—A Comparison to the Avirulent Vaccine Virus
by Yuxin Sha, Xinxin Liu, Weiwen Yan, Mengjun Wang, Hongjin Li, Shanshan Jiang, Sijie Wang, Yongning Ren, Kexin Zhang and Renfu Yin
Microorganisms 2024, 12(5), 971; https://doi.org/10.3390/microorganisms12050971 (registering DOI) - 11 May 2024
Viewed by 264
Abstract
There are significant variations in pathogenicity among different virulent strains of the Newcastle disease virus (NDV). Virulent NDV typically induces severe pathological changes and high mortality rates in infected birds, while avirulent NDV usually results in asymptomatic infection. Currently, the understanding of the [...] Read more.
There are significant variations in pathogenicity among different virulent strains of the Newcastle disease virus (NDV). Virulent NDV typically induces severe pathological changes and high mortality rates in infected birds, while avirulent NDV usually results in asymptomatic infection. Currently, the understanding of the specific mechanisms underlying the differences in host pathological responses and symptoms caused by various virulent NDV strains remains limited. Long non-coding RNA (lncRNA) can participate in a range of biological processes and plays a crucial role in viral infection and replication. Therefore, this study employed RNA-Seq to investigate the transcriptional profiles of chicken embryos’ visceral tissues (CEVTs) infected with either the virulent NA-1 strain or avirulent LaSota strain at 24 hpi and 36 hpi. Using bioinformatic methods, we obtained a total of 2532 lncRNAs, of which there were 52 and 85 differentially expressed lncRNAs at 24 hpi and 36 hpi, respectively. LncRNA analysis revealed that the severe pathological changes and symptoms induced by virulent NDV infection may be partially attributed to related target genes, regulated by differentially expressed lncRNAs such as MSTRG.1545.5, MSTRG.14601.6, MSTRG.7150.1, and MSTRG.4481.1. Taken together, these findings suggest that virulent NDV infection exploits the host’s metabolic resources and exerts an influence on the host’s metabolic processes, accompanied by excessive activation of the immune response. This impacts the growth and development of each system of CEVTs, breaches the blood–brain barrier, inflicts severe damage on the nervous system, and induces significant lesions. These observations may be attributed to variations in pathology. Consequently, novel insights were obtained into the intricate regulatory mechanisms governing NDV and host interactions. This will aid in unraveling the molecular mechanisms underlying both virulent and avirulent forms of NDV infection. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases)
83 pages, 571 KiB  
Article
Collider Bias Assessment in Colombian Indigenous Wiwa and Kogui Populations with Chronic Gastroenteric Disorder of Likely Infectious Etiology Suggests Complex Microbial Interactions Rather Than Clear Assignments of Etiological Relevance
by Hagen Frickmann, Joy Backhaus, Achim Hoerauf, Ralf Matthias Hagen and Simone Kann
Microorganisms 2024, 12(5), 970; https://doi.org/10.3390/microorganisms12050970 (registering DOI) - 11 May 2024
Viewed by 207
Abstract
Multiple microbial detections in stool samples of indigenous individuals suffering from chronic gastroenteric disorder of a likely infectious origin, characterized by recurring diarrhea of variable intensity, in the rural north-east of Colombia are common findings, making the assignment of etiological relevance to individual [...] Read more.
Multiple microbial detections in stool samples of indigenous individuals suffering from chronic gastroenteric disorder of a likely infectious origin, characterized by recurring diarrhea of variable intensity, in the rural north-east of Colombia are common findings, making the assignment of etiological relevance to individual pathogens challenging. In a population of 773 indigenous people from either the tribe Wiwa or Kogui, collider bias analysis was conducted comprising 32 assessed microorganisms including 10 bacteria (Aeromonas spp., Campylobacter spp., enteroaggregative Escherichia coli (EAEC), enteropathogenic Escherichia coli (EPEC), enterotoxigenic Escherichia coli (ETEC), Salmonella spp., Shiga toxin-producing Escherichia coli (STEC), Shigella spp./enteroinvasive Escherichia coli (EIEC), Tropheryma whipplei and Yersinia spp.), 11 protozoa (Blastocystis spp., Cryptosporidium spp., Cyclospora spp., Dientamoeba fragilis, Entamoeba coli, Entamoeba bangladeshi/dispar/histolytica/moshkovskii complex, Entamoeba histolytica, Endolimax nana, Giardia duodenalis, Iodamoeba buetschlii and Pentatrichomonas hominis), 8 helminths (Ascaris spp., Enterobius vermicularis, Hymenolepis spp., Necator americanus, Schistosoma spp., Strongyloides spp., Taenia spp. and Trichuris spp.), microsporidia (Encephalocytozoon spp.) and fungal elements (microscopically observed conidia and pseudoconidia). The main results indicated that negative associations potentially pointing towards collider bias were infrequent events (n = 14), while positive associations indicating increased likelihood of co-occurrence of microorganisms quantitatively dominated (n = 88). Microorganisms showing the most frequent negative associations were EPEC (n = 6) and Blastocystis spp. (n = 3), while positive associations were most common for Trichuris spp. (n = 16), Dientamoeba fragilis (n = 15), Shigella spp./EIEC (n = 12), Ascaris spp. (n = 11) and Blastocystis spp. (n = 10). Of note, positive associations quantitively dominated for Blastocystis spp. In conclusion, collider bias assessment did not allow clear-cut assignment of etiological relevance for detected enteric microorganisms within the assessed Colombian indigenous population. Instead, the results suggested complex microbial interactions with potential summative effects. Future studies applying alternative biostatistical approaches should be considered to further delineate respective interactions. Full article
(This article belongs to the Special Issue Novel Strategies in the Study of the Human Gut Microbiota 2.0)
14 pages, 2985 KiB  
Article
Interruption after Short-Term Nitrogen Additions Improves Ecological Stability of Larix olgensis Forest Soil by Affecting Bacterial Communities
by Tongbao Qu, Xiaoting Zhao, Siyu Yan, Yushan Liu, Muhammad Jamal Ameer and Lei Zhao
Microorganisms 2024, 12(5), 969; https://doi.org/10.3390/microorganisms12050969 (registering DOI) - 11 May 2024
Viewed by 190
Abstract
Atmospheric nitrogen deposition can alter soil microbial communities and further impact the structure and function of forest ecosystems. However, most studies are focused on positive or negative effects after nitrogen addition, and few studies pay attention to its interruption. In order to investigate [...] Read more.
Atmospheric nitrogen deposition can alter soil microbial communities and further impact the structure and function of forest ecosystems. However, most studies are focused on positive or negative effects after nitrogen addition, and few studies pay attention to its interruption. In order to investigate whether interruption after different levels of short-term N additions still benefit soil health, we conducted a 2-year interruption after a 4-year short-term nitrogen addition (10 and 20 kg N·hm−2·yr−1) experiment; then, we compared soil microbial diversity and structure and analyzed soil physicochemical properties and their correlations before and after the interruption in Larix olgensis forest soil in northeast China. The results showed that soil ecological stabilization of Larix olgensis forest further improved after the interruption compared to pre-interruption. The TN, C:P, N:P, and C:N:P ratios increased significantly regardless of the previous nitrogen addition concentration, and soil nutrient cycling was further promoted. The relative abundance of the original beneficial microbial taxa Gemmatimonas, Sphingomonas, and Pseudolabrys increased; new beneficial bacteria Ellin6067, Massilia, Solirubrobacter, and Bradyrhizobium appeared, and the species of beneficial soil microorganisms were further improved. The results of this study elucidated the dynamics of the bacterial community before and after the interruption of short-term nitrogen addition and could provide data support and a reference basis for forest ecosystem restoration strategies and management under the background of global nitrogen deposition. Full article
(This article belongs to the Special Issue Soil Microbial Communities under Environmental Change)
Show Figures

Figure 1

14 pages, 10874 KiB  
Article
The Combination of Buchloe dactyloides Engelm and Biochar Promotes the Remediation of Soil Contaminated with Polycyclic Aromatic Hydrocarbons
by Yuancheng Wang, Ao Li, Bokun Zou, Yongqiang Qian, Xiaoxia Li and Zhenyuan Sun
Microorganisms 2024, 12(5), 968; https://doi.org/10.3390/microorganisms12050968 (registering DOI) - 11 May 2024
Viewed by 165
Abstract
Polycyclic aromatic hydrocarbons (PAHs) cause serious stress to biological health and the soil environment as persistent pollutants. Despite the wide use of biochar in promoting soil improvement, the mechanism of biochar removing soil PAHs through rhizosphere effect in the process of phytoremediation remain [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) cause serious stress to biological health and the soil environment as persistent pollutants. Despite the wide use of biochar in promoting soil improvement, the mechanism of biochar removing soil PAHs through rhizosphere effect in the process of phytoremediation remain uncertain. In this study, the regulation of soil niche and microbial degradation strategies under plants and biochar were explored by analyzing the effects of plants and biochar on microbial community composition, soil metabolism and enzyme activity in the process of PAH degradation. The combination of plants and biochar significantly increased the removal of phenanthrene (6.10%), pyrene (11.50%), benzo[a]pyrene (106.02%) and PAHs (27.10%) when compared with natural attenuation, and significantly increased the removal of benzo[a]pyrene (34.51%) and PAHs (5.96%) when compared with phytoremediation. Compared with phytoremediation, the combination of plants and biochar significantly increased soil nutrient availability, enhanced soil enzyme activity (urease and catalase), improved soil microbial carbon metabolism and amino acid metabolism, thereby benefiting microbial resistance to PAH stress. In addition, the activity of soil enzymes (dehydrogenase, polyphenol oxidase and laccase) and the expression of genes involved in the degradation and microorganisms (streptomyces, curvularia, mortierella and acremonium) were up-regulated through the combined action of plants and biochar. In view of the aforementioned results, the combined application of plants and biochar can enhance the degradation of PAHs and alleviate the stress of PAH on soil microorganisms. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

12 pages, 1467 KiB  
Article
Point-of-Care Method T2Bacteria®Panel Enables a More Sensitive and Rapid Diagnosis of Bacterial Blood Stream Infections and a Shorter Time until Targeted Therapy Than Blood Culture
by Tamara Clodi-Seitz, Sebastian Baumgartner, Michael Turner, Theresa Mader, Julian Hind, Christoph Wenisch, Alexander Zoufaly and Elisabeth Presterl
Microorganisms 2024, 12(5), 967; https://doi.org/10.3390/microorganisms12050967 (registering DOI) - 11 May 2024
Viewed by 250
Abstract
Background: Rapid diagnosis and identification of pathogens are pivotal for appropriate therapy of blood stream infections. The T2Bacteria®Panel, a culture-independent assay for the detection of Escherichia coli, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and [...] Read more.
Background: Rapid diagnosis and identification of pathogens are pivotal for appropriate therapy of blood stream infections. The T2Bacteria®Panel, a culture-independent assay for the detection of Escherichia coli, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa in blood, was evaluated under real-world conditions as a point-of-care method including patients admitted to the internal medicine ward due to suspected blood stream infection. Methods: Patients were assigned to two groups (standard of care—SOC vs. T2). In the SOC group 2 × 2 blood culture samples were collected, in the T2 group the T2Bacteria®Panel was performed additionally for pathogen identification. Results: A total of 94 patients were included. Pathogens were detected in 19 of 50 patients (38%) in the T2 group compared to 16 of 44 patients (36.4%) in the SOC group. The median time until pathogen detection was significantly shorter in the T2 group (4.5 h vs. 60 h, p < 0.001), as well as the time until targeted therapy (antibiotic with the narrowest spectrum and maximal effectiveness) (6.4 h vs. 42.2 h, p = 0.043). Conclusions: The implementation of the T2Bacteria®Panel for patients with sepsis leads to an earlier targeted antimicrobial therapy resulting in earlier sufficient treatment and decreased excessive usage of broad-spectrum antimicrobials. Full article
(This article belongs to the Special Issue Bacteremia and Sepsis)
Show Figures

Figure 1

17 pages, 2658 KiB  
Article
Metallo-Glycodendrimeric Materials against Enterotoxigenic Escherichia coli
by Aly El Riz, Armelle Tchoumi Neree, Leila Mousavifar, René Roy, Younes Chorfi and Mircea Alexandru Mateescu
Microorganisms 2024, 12(5), 966; https://doi.org/10.3390/microorganisms12050966 (registering DOI) - 11 May 2024
Viewed by 211
Abstract
Conjugation of carbohydrates to nanomaterials has been extensively studied and recognized as an alternative in the biomedical field. Dendrimers synthesized with mannose at the end group and with entrapped zero-valent copper/silver could be a potential candidate against bacterial proliferation. This study is aimed [...] Read more.
Conjugation of carbohydrates to nanomaterials has been extensively studied and recognized as an alternative in the biomedical field. Dendrimers synthesized with mannose at the end group and with entrapped zero-valent copper/silver could be a potential candidate against bacterial proliferation. This study is aimed at investigating the bactericidal activity of metal-glycodendrimers. The Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction was used to synthesize a new mannosylated dendrimer containing 12 mannopyranoside residues in the periphery. The enterotoxigenic Escherichia coli fimbriae 4 (ETEC:F4) viability, measured at 600 nm, showed the half-inhibitory concentration (IC50) of metal-free glycodendrimers (D), copper-loaded glycodendrimers (D:Cu) and silver-loaded glycodendrimers (D:Ag) closed to 4.5 × 101, 3.5 × 101 and to 1.0 × 10−2 µg/mL, respectively, and minimum inhibitory concentration (MIC) of D, D:Cu and D:Ag of 2.0, 1.5 and 1.0 × 10−4 µg/mL, respectively. The release of bacteria contents onto broth and the inhibition of ETEC:F4 biofilm formation increased with the number of metallo-glycodendrimer materials, with a special interest in silver-containing nanomaterial, which had the highest activity, suggesting that glycodendrimer-based materials interfered with bacteria-bacteria or bacteria–polystyrene interactions, with bacteria metabolism and can disrupt bacteria cell walls. Our findings identify metal–mannose-dendrimers as potent bactericidal agents and emphasize the effect of entrapped zero-valent metal against ETEC:F4. Full article
(This article belongs to the Special Issue Antimicrobial Properties of Nanoparticle)
Show Figures

Figure 1

19 pages, 1111 KiB  
Article
Bioaerosol Sampling Devices and Pretreatment for Bacterial Characterization: Theoretical Differences and a Field Experience in a Wastewater Treatment Plant
by Anastasia Serena Gaetano, Sabrina Semeraro, Samuele Greco, Enrico Greco, Andrea Cain, Maria Grazia Perrone, Alberto Pallavicini, Sabina Licen, Stefano Fornasaro and Pierluigi Barbieri
Microorganisms 2024, 12(5), 965; https://doi.org/10.3390/microorganisms12050965 (registering DOI) - 10 May 2024
Viewed by 454
Abstract
Studies on bioaerosol bacterial biodiversity have relevance in both ecological and health contexts, and molecular methods, such as 16S rRNA gene-based barcoded sequencing, provide efficient tools for the analysis of airborne bacterial communities. Standardized methods for sampling and analysis of bioaerosol DNA are [...] Read more.
Studies on bioaerosol bacterial biodiversity have relevance in both ecological and health contexts, and molecular methods, such as 16S rRNA gene-based barcoded sequencing, provide efficient tools for the analysis of airborne bacterial communities. Standardized methods for sampling and analysis of bioaerosol DNA are lacking, thus hampering the comparison of results from studies implementing different devices and procedures. Three samplers that use gelatin filtration, swirling aerosol collection, and condensation growth tubes for collecting bioaerosol at an aeration tank of a wastewater treatment plant in Trieste (Italy) were used to determine the bacterial biodiversity. Wastewater samples were collected directly from the untreated sewage to obtain a true representation of the microbiological community present in the plant. Different samplers and collection media provide an indication of the different grades of biodiversity, with condensation growth tubes and DNA/RNA shieldTM capturing the richer bacterial genera. Overall, in terms of relative abundance, the air samples have a lower number of bacterial genera (64 OTUs) than the wastewater ones (75 OTUs). Using the metabarcoding approach to aerosol samples, we provide the first preliminary step toward the understanding of a significant diversity between different air sampling systems, enabling the scientific community to orient research towards the most informative sampling strategy. Full article
(This article belongs to the Special Issue Advances in Bioaerosols)
Show Figures

Figure 1

13 pages, 648 KiB  
Article
Clinical Evaluation of VITEK MS PRIME with PICKME Pen for Bacteria and Yeasts, and RUO Database for Filamentous Fungi
by Hyeyoung Lee, Jehyun Koo, Junsang Oh, Sung-Il Cho, Hyunjoo Lee, Hyun Ji Lee, Gi-Ho Sung and Jayoung Kim
Microorganisms 2024, 12(5), 964; https://doi.org/10.3390/microorganisms12050964 (registering DOI) - 10 May 2024
Viewed by 212
Abstract
The VITEK MS PRIME (bioMérieux, Marcy-l’Étoile, France), a newly developed matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) system, alongside the VITEK PICKME pen (PICKME), offers easy sample preparation for bacteria and yeasts. The VITEK MS PRIME also offers two software platforms [...] Read more.
The VITEK MS PRIME (bioMérieux, Marcy-l’Étoile, France), a newly developed matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) system, alongside the VITEK PICKME pen (PICKME), offers easy sample preparation for bacteria and yeasts. The VITEK MS PRIME also offers two software platforms for filamentous fungi: the IVD database and the RUO database. Our study evaluated its identification agreement on 320 clinical isolates of bacteria and yeasts, comparing PICKME and traditional wooden toothpick sampling techniques against MicroIDSys Elite (ASTA) results. Additionally, we assessed the IVD (v3.2) and SARAMIS (v4.16) RUO databases on 289 filamentous fungi against molecular sequencing. The concordance rates for species-level identification of bacteria and yeasts were about 89.4% (286/320) between the PICKME and wooden toothpick, and about 83.4–85.3% between the VITEK MS PRIME and ASTA MicroIDSys Elite. Retesting with PICKME improved concordance to 91.9%. For filamentous fungi, species-level identification reached 71.3% with the IVD database and 85.8% with RUO, which significantly enhanced basidiomycetes’ identification from 35.3% to 100%. Some strains in the IVD database, like Aspergillus versicolor, Exophiala xenobiotica, and Nannizzia gypsea, failed to be identified. The VITEK MS PRIME with PICKME offers reliable and efficient microorganism identification. For filamentous fungi, combined use of the RUO database can be beneficial, especially for basidiomycetes. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 2977 KiB  
Article
Diversity and Composition of Soil Acidobacterial Communities in Different Temperate Forest Types of Northeast China
by Feng Jiao, Lili Qian, Jinhua Wu, Dongdong Zhang, Junying Zhang, Mingyu Wang, Xin Sui and Xianbang Zhang
Microorganisms 2024, 12(5), 963; https://doi.org/10.3390/microorganisms12050963 - 10 May 2024
Viewed by 267
Abstract
To gain an in-depth understanding of the diversity and composition of soil Acidobacteria in five different forest types in typical temperate forest ecosystems and to explore their relationship with soil nutrients. The diversity of soil Acidobacteria was determined by high-throughput sequencing technology. Soil [...] Read more.
To gain an in-depth understanding of the diversity and composition of soil Acidobacteria in five different forest types in typical temperate forest ecosystems and to explore their relationship with soil nutrients. The diversity of soil Acidobacteria was determined by high-throughput sequencing technology. Soil Acidobacteria’s alpha-diversity index and soil nutrient content differed significantly among different forest types. β-diversity and the composition of soil Acidobacteria also varied across forest types. Acidobacterial genera, such as Acidobacteria_Gp1, Acidobacteria_Gp4, and Acidobacteria_Gp17, play key roles in different forests. The RDA analyses pointed out that the soil pH, available nitrogen (AN), carbon to nitrogen (C/N) ratio, available phosphorus (AP), total carbon (TC), and total phosphorus (TP) were significant factors affecting soil Acidobacteria in different forest types. In this study, the diversity and composition of soil Acidobacteria under different forest types in a temperate forest ecosystem were analyzed, revealing the complex relationship between them and soil physicochemical properties. These findings not only enhance our understanding of soil microbial ecology but also provide important guidance for ecological conservation and restoration strategies for temperate forest ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 2588 KiB  
Article
Novel Tick-Borne Anaplasmataceae Genotypes in Tropical Birds from the Brazilian Pantanal Wetland
by Amir Salvador Alabí Córdova, Alan Fecchio, Ana Cláudia Calchi, Clara Morato Dias, Anna Claudia Baumel Mongruel, Lorena Freitas das Neves, Daniel Antonio Braga Lee, Rosangela Zacarias Machado and Marcos Rogério André
Microorganisms 2024, 12(5), 962; https://doi.org/10.3390/microorganisms12050962 - 10 May 2024
Viewed by 332
Abstract
Despite numerous reports of Anaplasmataceae agents in mammals worldwide, few studies have investigated their occurrence in birds. The present study aimed to investigate the occurrence and molecular identity of Anaplasmataceae agents in birds from the Pantanal wetland, Brazil. Blood samples were collected from [...] Read more.
Despite numerous reports of Anaplasmataceae agents in mammals worldwide, few studies have investigated their occurrence in birds. The present study aimed to investigate the occurrence and molecular identity of Anaplasmataceae agents in birds from the Pantanal wetland, Brazil. Blood samples were collected from 93 different species. After DNA extraction, samples positive for the avian β-actin gene were subjected to both a multiplex quantitative real-time (q)PCR for Anaplasma and Ehrlichia targeting the groEL gene and to a conventional PCR for Anaplasmataceae agents targeting the 16S rRNA gene. As a result, 37 (7.4%) birds were positive for Anaplasma spp. and 4 (0.8%) for Ehrlichia spp. in the qPCR assay; additionally, 13 (2.6%) were positive for Anaplasmataceae agents in the PCR targeting the 16S rRNA gene. The Ehrlichia 16S rRNA sequences detected in Arundinicola leucocephala, Ramphocelus carbo, and Elaenia albiceps were positioned closely to Ehrlichia sp. Magellanica. Ehrlichia dsb sequences detected in Agelasticus cyanopus and Basileuterus flaveolus grouped with Ehrlichia minasensis. The 16S rRNA genotypes detected in Crax fasciolata, Pitangus sulphuratus and Furnarius leucopus grouped with Candidatus Allocryptoplasma. The 23S-5S genotypes detected in C. fasciolata, Basileuterus flaveolus, and Saltator coerulescens were related to Anaplasma phagocytophilum. In conclusion, novel genotypes of Anaplasma, Ehrlichia, and Candidatus Allocryptoplasma were detected in birds from the Pantanal wetland. Full article
(This article belongs to the Section Parasitology)
Show Figures

Figure 1

7 pages, 255 KiB  
Communication
Validation of a Loop-Mediated Isothermal Amplification-Based Kit for the Detection of Legionella pneumophila in Environmental Samples According to ISO/TS 12869:2012
by Giorgia Caruso, Maria Anna Coniglio, Pasqualina Laganà, Teresa Fasciana, Giuseppe Arcoleo, Ignazio Arrigo, Paola Di Carlo, Mario Palermo and Anna Giammanco
Microorganisms 2024, 12(5), 961; https://doi.org/10.3390/microorganisms12050961 - 10 May 2024
Viewed by 251
Abstract
Legionella pneumophila is a freshwater opportunistic pathogen and the leading cause of severe pneumonia known as Legionnaires’ disease. It can be found in all water systems and survives in biofilms, free-living amoebae, and a wide variety of facilities, such as air conditioning and [...] Read more.
Legionella pneumophila is a freshwater opportunistic pathogen and the leading cause of severe pneumonia known as Legionnaires’ disease. It can be found in all water systems and survives in biofilms, free-living amoebae, and a wide variety of facilities, such as air conditioning and showers in hospitals, hotels and spas. The reference cultural method allows for the isolation and identification in many days, and in addition, it does not detect viable but rather non-culturable bacteria, increasing the risk of infection. In this context, a new LAMP-based (loop-mediated isothermal amplification) kit was developed, allowing for the rapid, sensitive, and labor-saving detection of L. pneumophila. The kit, “Legionella pneumophila Glow”, was validated according to ISO/TS 12869:2012, testing sensitivity, inclusivity and exclusivity, and kit robustness. Sensitivity showed that the “Legionella pneumophila Glow” kit can detect up to 28 plasmid copies/µL. Robustness tests showed consistent results, with both contamination levels and the matrices used giving reproducible results. Furthermore, real samples were evaluated to compare the performance of the two methods. The LAMP kit “Legionella pneumophila Glow” proved a useful option for the rapid, efficient, and labor-saving screening of different typologies of water samples, offering significant advantages over the traditional method, as it is characterized by a high sensitivity, ease of use for laboratory testing, and a large reduction in analysis time, making it an asset to official controls. Full article
Previous Issue
Back to TopTop