Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3843 KiB  
Review
Beyond Small Molecules: Antibodies and Peptides for Fibroblast Activation Protein Targeting Radiopharmaceuticals
by Xiaona Sun, Yuxuan Wu, Xingkai Wang, Xin Gao, Siqi Zhang, Zhicheng Sun, Ruping Liu and Kuan Hu
Pharmaceutics 2024, 16(3), 345; https://doi.org/10.3390/pharmaceutics16030345 - 29 Feb 2024
Viewed by 1356
Abstract
Fibroblast activation protein (FAP) is a serine protease characterized by its high expression in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions. This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radiodiagnosis and therapy. [...] Read more.
Fibroblast activation protein (FAP) is a serine protease characterized by its high expression in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions. This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radiodiagnosis and therapy. The advent of FAP-based radiotheranostics is anticipated to revolutionize cancer management. Among various types of FAP ligands, peptides and antibodies have shown advantages over small molecules, exemplifying prolonged tumor retention in human volunteers. Within its scope, this review summarizes the recent research progress of the FAP radiopharmaceuticals based on antibodies and peptides in tumor imaging and therapy. Additionally, it incorporates insights from recent studies, providing valuable perspectives on the clinical utility of FAP-targeted radiopharmaceuticals. Full article
(This article belongs to the Special Issue Advances in Radiopharmaceuticals for Disease Diagnoses and Therapy)
Show Figures

Figure 1

23 pages, 2154 KiB  
Review
Functional Chitosan and Its Derivative-Related Drug Delivery Systems for Nano-Therapy: Recent Advances
by Zixu Wang, Fangying Yu and Fuqiang Hu
Pharmaceutics 2024, 16(3), 337; https://doi.org/10.3390/pharmaceutics16030337 - 28 Feb 2024
Viewed by 888
Abstract
In the struggle against diseases, the development of nano-therapy has certainly been a tremendous progression owing to the various superiority, and chitosan is no doubt a kind of prominent biopolymer material with versatility for applications in disease treatments. For the rational construction of [...] Read more.
In the struggle against diseases, the development of nano-therapy has certainly been a tremendous progression owing to the various superiority, and chitosan is no doubt a kind of prominent biopolymer material with versatility for applications in disease treatments. For the rational construction of chitosan-related nano-biodevices, it is necessary to pay full attention to the material itself, where it is the material properties that guide the design criteria. Additionally, the well-matched preparation methods between material carriers and therapeutic agents draw much attention to the final construction since they seem to be more realistic. In detail, we present a comprehensive overview of recent advances in rational construction of chitosan-related nano-therapies with respect to material-property-oriented design criteria and preparation methods in the current review article, based on the foundation of continuous investigations. Based on this review, a portion of the various uses of chitosan-related nano-biodevices for biomedical applications are specifically discussed. Here, the strategies demonstrate the versatility of chitosan well, and the concept of being simple yet effective is well illustrated and vividly communicated. Altogether, a fresh concept concerning multi-functional chitosan and its derivative-related drug delivery systems for nano-therapy is proposed in this review, and this could be applied to other materials, which seems to be a novel angle. Full article
Show Figures

Figure 1

12 pages, 3676 KiB  
Article
Studying the API Distribution of Controlled Release Formulations Produced via Continuous Twin-Screw Wet Granulation: Influence of Matrix Former, Filler and Process Parameters
by Phaedra Denduyver, Chris Vervaet and Valérie Vanhoorne
Pharmaceutics 2024, 16(3), 341; https://doi.org/10.3390/pharmaceutics16030341 - 28 Feb 2024
Viewed by 777
Abstract
Hydroxypropyl methylcellulose (HPMC) is a preferred hydrophilic matrix former for controlled release formulations produced through continuous twin-screw wet granulation. However, a non-homogeneous API distribution over sieve fractions with underdosing in the fines fraction (<150 µm) was previously reported. This could result in content [...] Read more.
Hydroxypropyl methylcellulose (HPMC) is a preferred hydrophilic matrix former for controlled release formulations produced through continuous twin-screw wet granulation. However, a non-homogeneous API distribution over sieve fractions with underdosing in the fines fraction (<150 µm) was previously reported. This could result in content uniformity issues during downstream processing. Therefore, the current study investigated the root cause of the non-homogeneous theophylline distribution. The effect of process parameters (L/S-ratio and screw configuration) and formulation parameters (matrix former and filler type) on content uniformity was studied. Next, the influence of the formulation parameters on tableting and dissolution behavior was investigated. Altering the L/S-ratio or using a more aggressive screw configuration did not result in a homogeneous API distribution over the granule sieve fractions. Using microcrystalline cellulose (MCC) as filler improved the API distribution due to its similar behavior as HPMC. As excluding HPMC or including a hydrophobic matrix former (Kollidon SR) yielded granules with a homogeneous API distribution, HPMC was identified as the root cause of the non-homogeneous API distribution. This was linked to its fast hydration and swelling (irrespective of the HPMC grade) upon addition of the granulation liquid. Full article
Show Figures

Figure 1

20 pages, 1877 KiB  
Article
Conjugated Linoleic Acid–Carboxymethyl Chitosan Polymeric Micelles to Improve the Solubility and Oral Bioavailability of Paclitaxel
by Iqra Mubeen, Ghulam Abbas, Shahid Shah and Abdullah A Assiri
Pharmaceutics 2024, 16(3), 342; https://doi.org/10.3390/pharmaceutics16030342 - 28 Feb 2024
Viewed by 755
Abstract
Oral delivery, the most common method of therapeutic administration, has two significant obstacles: drug solubility and permeability. The challenges of current oral medicine delivery are being tackled through an emerging method that uses structures called polymeric micelles. In the present study, polymeric micelles [...] Read more.
Oral delivery, the most common method of therapeutic administration, has two significant obstacles: drug solubility and permeability. The challenges of current oral medicine delivery are being tackled through an emerging method that uses structures called polymeric micelles. In the present study, polymeric micelles were developed using conjugates of linoleic acid–carboxymethyl chitosan (LA-CMCS) for the oral delivery of paclitaxel (PCL). The developed micelles were evaluated by particle size, zeta potential, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). When PCL was contained within micelles, its solubility increased by almost 13.65 times (around 60 µg/mL). The micelles’ zeta potentials were −29 mV, their polydispersity indices were 0.023, and their particle diameters were 93 nm. Micelles showed PCL loading and entrapment efficiencies of 67% and 61%, respectively. The sustained release qualities of the PCL release data from micelles were good. In comparison to the pure PCL suspension, the permeability of the PCL from micelles was 2.2 times higher. The pharmacokinetic data revealed that PCL with LA-CMCS micelles had a relative bioavailability of 239.17%, which was much greater than the PCL in the suspension. The oral bioavailability of PCL was effectively increased by LA-CMCS micelles according to an in vivo study on animals. The polymer choice, maybe through improved permeability, plays an essential role when assessing oral bioavailability enhancement and solubility improvement (13.65 times). The outcomes demonstrated that PCL’s solubility and pharmacokinetics were improved in the micelles of the LA-CMCS conjugate. Full article
Show Figures

Graphical abstract

22 pages, 32030 KiB  
Article
Design of Etched- and Functionalized-Halloysite/Meloxicam Hybrids: A Tool for Enhancing Drug Solubility and Dissolution Rate
by Valeria Friuli, Claudia Urru, Chiara Ferrara, Debora Maria Conti, Giovanna Bruni, Lauretta Maggi and Doretta Capsoni
Pharmaceutics 2024, 16(3), 338; https://doi.org/10.3390/pharmaceutics16030338 - 28 Feb 2024
Viewed by 662
Abstract
The study focuses on the synthesis and characterization of Meloxicam–halloysite nanotube (HNT) composites as a viable approach to enhance the solubility and dissolution rate of meloxicam, a poorly water-soluble drug (BCS class II). Meloxicam is loaded on commercial and modified halloysite (acidic and [...] Read more.
The study focuses on the synthesis and characterization of Meloxicam–halloysite nanotube (HNT) composites as a viable approach to enhance the solubility and dissolution rate of meloxicam, a poorly water-soluble drug (BCS class II). Meloxicam is loaded on commercial and modified halloysite (acidic and alkaline etching, or APTES and chitosan functionalization) via a solution method. Several techniques (XRPD, FT-IR, 13C solid-state NMR, SEM, EDS, TEM, DSC, TGA) are applied to characterize both HNTs and meloxicam–HNT systems. In all the investigated drug–clay hybrids, a high meloxicam loading of about 40 wt% is detected. The halloysite modification processes and the drug loading do not alter the structure and morphology of both meloxicam and halloysite nanotubes, which are in intimate contact in the composites. Weak drug–clay and drug-functionalizing agent interactions occur, involving the meloxicam amidic functional group. All the meloxicam–halloysite composites exhibit enhanced dissolution rates, as compared to meloxicam. The meloxicam–halloysite composite, functionalized with chitosan, showed the best performance both in water and in buffer at pH 7.5. The drug is completely released in 4–5 h in water and in less than 1 h in phosphate buffer. Notably, an equilibrium solubility of 13.7 ± 4.2 mg/L in distilled water at 21 °C is detected, and wettability dramatically increases, compared to the raw meloxicam. These promising results can be explained by the chitosan grafting on the outer surface of halloysite nanotubes, which provides increased specific surface area (100 m2/g) disposable for drug adsorption/desorption. Full article
(This article belongs to the Special Issue Innovative Formulations of Poorly Soluble Drugs)
Show Figures

Figure 1

19 pages, 2894 KiB  
Review
Structure–Activity Relationship of PAD4 Inhibitors and Their Role in Tumor Immunotherapy
by Yijiang Jia, Renbo Jia, Ayijiang Taledaohan, Yanming Wang and Yuji Wang
Pharmaceutics 2024, 16(3), 335; https://doi.org/10.3390/pharmaceutics16030335 - 28 Feb 2024
Viewed by 1149
Abstract
Protein arginine deiminase 4 (PAD4) plays an important role in cancer progression by participating in gene regulation, protein modification, and neutrophil extracellular trap (NET) formation. Many reversible and irreversible PAD4 inhibitors have been reported recently. In this review, we summarize the structure–activity relationships [...] Read more.
Protein arginine deiminase 4 (PAD4) plays an important role in cancer progression by participating in gene regulation, protein modification, and neutrophil extracellular trap (NET) formation. Many reversible and irreversible PAD4 inhibitors have been reported recently. In this review, we summarize the structure–activity relationships of newly investigated PAD4 inhibitors to bring researchers up to speed by guiding and describing new scaffolds as optimization and development leads for new effective, safe, and selective cancer treatments. In addition, some recent reports have shown evidence that PAD4 inhibitors are expected to trigger antitumor immune responses, regulate immune cells and related immune factors, enhance the effects of immune checkpoint inhibitors, and enhance their antitumor efficacy. Therefore, PAD4 inhibitors may potentially change tumor immunotherapy and provide an excellent direction for the development and clinical application of immunotherapy strategies for related diseases. Full article
Show Figures

Figure 1

15 pages, 2571 KiB  
Article
Pharmacokinetic Modeling of Bepotastine for Determination of Optimal Dosage Regimen in Pediatric Patients with Allergic Rhinitis or Urticaria
by Sukyong Yoon, Byung Hak Jin, Choon Ok Kim, Kyungsoo Park, Min Soo Park and Dongwoo Chae
Pharmaceutics 2024, 16(3), 334; https://doi.org/10.3390/pharmaceutics16030334 - 27 Feb 2024
Viewed by 833
Abstract
Bepotastine, a second-generation antihistamine for allergic rhinitis and urticaria, is widely used in all age groups but lacks appropriate dosing guidelines for pediatric patients, leading to off-label prescriptions. We conducted this study to propose an optimal dosing regimen for pediatric patients based on [...] Read more.
Bepotastine, a second-generation antihistamine for allergic rhinitis and urticaria, is widely used in all age groups but lacks appropriate dosing guidelines for pediatric patients, leading to off-label prescriptions. We conducted this study to propose an optimal dosing regimen for pediatric patients based on population pharmacokinetic (popPK) and physiologically based pharmacokinetic (PBPK) models using data from two previous trials. A popPK model was built using NONMEM software. A one-compartment model with first-order absorption and absorption lag time described our data well, with body weight incorporated as the only covariate. A PBPK model was developed using PK-Sim software version 10, and the model well predicted the drug concentrations obtained from pediatric patients. Furthermore, the final PBPK model showed good concordance with the known properties of bepotastine. Appropriate pediatric doses for different weight and age groups were proposed based on the simulations. Discrepancies in recommended doses from the two models were likely due to the incorporation of age-dependent physiological factors in the PBPK model. In conclusion, our study is the first to suggest an optimal oral dosing regimen of bepotastine in pediatric patients using both approaches. This is expected to foster safer and more productive use of the drug. Full article
(This article belongs to the Special Issue Model-Informed Drug Discovery and Development, 2nd Edition)
Show Figures

Figure 1

18 pages, 4626 KiB  
Article
Ivermectin-Loaded Mesoporous Silica and Polymeric Nanocapsules: Impact on Drug Loading, In Vitro Solubility Enhancement, and Release Performance
by Maiara Callegaro Velho, Nadine Lysyk Funk, Monique Deon, Edilson Valmir Benvenutti, Silvio Buchner, Ruth Hinrichs, Diogo André Pilger and Ruy Carlos Ruver Beck
Pharmaceutics 2024, 16(3), 325; https://doi.org/10.3390/pharmaceutics16030325 - 26 Feb 2024
Viewed by 904
Abstract
Ivermectin (IVM), a widely used drug for parasitic infections, faces formulation and application challenges due to its poor water solubility and limited bioavailability. Pondering the impact of IVM’s high partition coefficient value (log P) on its drug release performance, it is relevant to [...] Read more.
Ivermectin (IVM), a widely used drug for parasitic infections, faces formulation and application challenges due to its poor water solubility and limited bioavailability. Pondering the impact of IVM’s high partition coefficient value (log P) on its drug release performance, it is relevant to explore whether IVM nanoencapsulation in organic or inorganic nanoparticles would afford comparable enhanced aqueous solubility. To date, the use of inorganic nanoparticles remains an unexplored approach for delivering IVM. Therefore, here we loaded IVM in mesoporous silica particles (IVM-MCM), as inorganic nanomaterial, and in well-known poly(ε-caprolactone) nanocapsules (IVM-NC). IVM-MCM had a well-organized hexagonal mesoporous structure, reduced surface area, and high drug loading of 10% w/w. IVM-NC had a nanometric mean size (196 nm), high encapsulation efficiency (100%), physicochemical stability as an aqueous dispersion, and drug loading of 0.1% w/w. Despite differing characteristics, both nanoencapsulated forms enhance IVM’s aqueous intrinsic solubility compared to a crystalline IVM: after 72 h, IVM-MCM and IVM-NC achieve 72% and 78% releases through a dialysis bag, whereas crystalline IVM dispersion achieves only 40% drug diffusion. These results show distinct controlled release profiles, where IVM-NC provides a deeper sustained controlled release over the whole experiment compared to the inorganic nanomaterial (IVM-MCM). Discussing differences, including drug loading and release kinetics, is crucial for optimizing IVM’s therapeutic performance. The study design, combined with administration route plans and safety considerations for humans and animals, may expedite the rational optimization of IVM nanoformulations for swift clinical translation. Full article
(This article belongs to the Special Issue Drug Nanocarriers for Pharmaceutical Applications)
Show Figures

Figure 1

22 pages, 8097 KiB  
Article
Formulation Development of Solid Self-Nanoemulsifying Drug Delivery Systems of Quetiapine Fumarate via Hot-Melt Extrusion Technology: Optimization Using Central Composite Design
by Prateek Uttreja, Ahmed Adel Ali Youssef, Indrajeet Karnik, Kavish Sanil, Nagarjuna Narala, Honghe Wang, Rasha M. Elkanayati, Sateesh Kumar Vemula and Michael A. Repka
Pharmaceutics 2024, 16(3), 324; https://doi.org/10.3390/pharmaceutics16030324 - 26 Feb 2024
Viewed by 1138
Abstract
Quetiapine fumarate (QTF) was approved for the treatment of schizophrenia and acute manic episodes. QTF can also be used as an adjunctive treatment for major depressive disorders. QTF oral bioavailability is limited due to its poor aqueous solubility and pre-systemic metabolism. The objective [...] Read more.
Quetiapine fumarate (QTF) was approved for the treatment of schizophrenia and acute manic episodes. QTF can also be used as an adjunctive treatment for major depressive disorders. QTF oral bioavailability is limited due to its poor aqueous solubility and pre-systemic metabolism. The objective of the current investigation was the formulation development and manufacturing of solid self-nanoemulsifying drug delivery system (S-SNEDDS) formulation through a single-step continuous hot-melt extrusion (HME) process to address these drawbacks. In this study, Capmul® MCM, Gelucire® 48/16, and propylene glycol were selected as oil, surfactant, and co-surfactant, respectively, for the preparation of S-SNEDDS. Soluplus® and Klucel™ EF (1:1) were selected as the solid carrier. Response surface methodology in the form of central composite design (CCD) was utilized in the current experimental design to develop the S-SNEDDS formulations via a continuous HME technology. The developed formulations were evaluated for self-emulsifying properties, particle size distribution, thermal behavior, crystallinity, morphology, physicochemical incompatibility, accelerated stability, and in vitro drug release studies. The globule size and emulsification time of the optimized SNEDDS formulation was 92.27 ± 3.4 nm and 3.4 ± 3.38 min. The differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) studies revealed the amorphous nature of the drug within the formulation. There were no drug-excipient incompatibilities observed following the Fourier transform infrared (FTIR) spectroscopy. The optimized formulation showed an extended-release profile for 24 h. The optimized formulation was stable for three months (last time-point tested) at 40 °C/75% RH. Therefore, the developed S-SNEDDS formulation could be an effective oral delivery platform for QTF and could lead to better therapeutic outcomes. Full article
Show Figures

Graphical abstract

19 pages, 1501 KiB  
Review
Research Progress of Extracellular Vesicles-Loaded Microneedle Technology
by Xue Wang, Wei Cheng and Jiandong Su
Pharmaceutics 2024, 16(3), 326; https://doi.org/10.3390/pharmaceutics16030326 - 26 Feb 2024
Viewed by 1101
Abstract
Microneedles (MNs), renowned for their painless and minimally invasive qualities, exhibit significant potential for facilitating effective drug delivery, vaccination, and targeted sample extraction. Extracellular vesicles (EVs), serving as cargo for MNs, are naturally occurring nanovesicles secreted by cells and characterized by novel biomarkers, [...] Read more.
Microneedles (MNs), renowned for their painless and minimally invasive qualities, exhibit significant potential for facilitating effective drug delivery, vaccination, and targeted sample extraction. Extracellular vesicles (EVs), serving as cargo for MNs, are naturally occurring nanovesicles secreted by cells and characterized by novel biomarkers, low immunogenicity, and cell-source-specific traits. MNs prove instrumental in extracting EVs from the sample fluid, thereby facilitating a promising diagnostic and prognostic tool. To harness the therapeutic potential of EVs in tissue repair, MNs with sustained delivery of EVs leverage micron-sized channels to enhance targeted site concentration, demonstrating efficacy in treating various diseases, such as Achillea tendinopathy, hair loss, spinal cord injury, and diabetic ulcers. EV-loaded MNs emerge as a promising platform for repair applications of skin, cardiac, tendon, hair, and spinal cord tissues. This review commences with an overview of MNs, subsequently delving into the role of EVs as cargo for MNs. The paper then synthesizes the latest advancements in the use of EV-loaded MNs for tissue regenerative repair, extending to research progress in extracting EVs from MNs for disease diagnosis and prognostic evaluations. It aims to offer valuable insights and forecast future research trajectories with the hope of inspiring innovative ideas among researchers in this field. Full article
(This article belongs to the Special Issue Novel Technologies for Buccal and Transdermal Drug Delivery)
Show Figures

Figure 1

17 pages, 3147 KiB  
Article
Design Space and Control Strategy for the Manufacturing of Wet Media Milled Drug Nanocrystal Suspensions by Adopting Mechanistic Process Modeling
by André Bitterlich, Andrej Mihorko and Michael Juhnke
Pharmaceutics 2024, 16(3), 328; https://doi.org/10.3390/pharmaceutics16030328 - 26 Feb 2024
Viewed by 948
Abstract
Wet media milling is a fully industrialized technology for the manufacturing of drug nanocrystal suspensions. This work describes the development of an advanced control strategy and an associated design space for a manufacturing process at a commercial scale. Full-scale experiments and mechanistic process [...] Read more.
Wet media milling is a fully industrialized technology for the manufacturing of drug nanocrystal suspensions. This work describes the development of an advanced control strategy and an associated design space for a manufacturing process at a commercial scale. Full-scale experiments and mechanistic process modeling have been used to establish a physically reasonable control strategy of factors relevant to the quality attributes of the nanocrystal suspension. The design space has been developed based on a mature mechanistic process model of the wet media milling procedure. It presents the process–product attribute relationship between a multidimensional range of measured process parameters and a range of the product-quality attribute mean particle sizes. The control strategy allows for simple, robust, and sound scientific process control as well as the operational flexibility of the suspension batch size. This is an industrial case study of control strategy and design-space definition with the crucial contribution of mechanistic process modeling for an intended commercial manufacturing process. Full article
Show Figures

Graphical abstract

18 pages, 8366 KiB  
Article
The Development and Characterization of Novel Ionic Liquids Based on Mono- and Dicarboxylates with Meglumine for Drug Solubilizers and Skin Permeation Enhancers
by Takayuki Furuishi, Sara Taguchi, Siran Wang, Kaori Fukuzawa and Etsuo Yonemochi
Pharmaceutics 2024, 16(3), 322; https://doi.org/10.3390/pharmaceutics16030322 - 26 Feb 2024
Viewed by 742
Abstract
In this study, we synthesized a family of novel ionic liquids (ILs) with meglumine (MGM) as cations and tartaric acid (TA), azelaic acid (AA), geranic acid (GA), and capric acid (CPA) as anions, using pharmaceutical additives via simple acid–base neutralization reactions. The successful [...] Read more.
In this study, we synthesized a family of novel ionic liquids (ILs) with meglumine (MGM) as cations and tartaric acid (TA), azelaic acid (AA), geranic acid (GA), and capric acid (CPA) as anions, using pharmaceutical additives via simple acid–base neutralization reactions. The successful synthesis was validated by attenuated total reflection–Fourier transform infrared (ATR-FTIR) and powder X-ray diffraction (PXRD). Thermal analysis using differential scanning calorimetry confirmed the glass transition temperature of MGM-ILs to be within the range of −43.4 °C–−13.8 °C. We investigated the solubilization of 15 drugs with varying pKa and partition coefficient (log P) values using these ILs and performed a comparative analysis. Furthermore, we present MGM-IL as a new skin permeation enhancer for the drug model flurbiprofen (FRP). We confirmed that AA/MGM-IL improves the skin permeation of FRP through hairless mouse skin. Moreover, AA/MGM-IL enhanced drug skin permeability by affecting keratin rather than stratum corneum lipids, as confirmed by ATR-FTIR. To conclude, MGM-ILs exhibited potential as drug solubilizer and skin permeation enhancers of drugs. Full article
Show Figures

Figure 1

18 pages, 6808 KiB  
Article
Liposomes Coated with Novel Synthetic Bifunctional Chitosan Derivatives as Potential Carriers of Anticancer Drugs
by Elisabetta Mazzotta, Antonia Marazioti, Spyridon Mourtas, Rita Muzzalupo and Sophia G. Antimisiaris
Pharmaceutics 2024, 16(3), 319; https://doi.org/10.3390/pharmaceutics16030319 - 24 Feb 2024
Cited by 1 | Viewed by 836
Abstract
In this study, liposomes coated with novel multifunctional polymers were proposed as an innovative platform for tumor targeted drug delivery. Novel Folic acid–Cysteine-Thiolated chitosan (FTC) derivatives possessing active targeting ability and redox responsivity were synthesized, characterized, and employed to develop FTC-coated liposomes. Liposomes [...] Read more.
In this study, liposomes coated with novel multifunctional polymers were proposed as an innovative platform for tumor targeted drug delivery. Novel Folic acid–Cysteine-Thiolated chitosan (FTC) derivatives possessing active targeting ability and redox responsivity were synthesized, characterized, and employed to develop FTC-coated liposomes. Liposomes were characterized for size, surface charge and drug encapsulation efficiency before and after coating. The formation of a coating layer on liposomal surface was confirmed by the slight increase in particle size and by zeta-potential changes. FTC-coated liposomes showed a redox-dependent drug release profile: good stability at physiological conditions and rapid release of liposome-entrapped calcein in presence of glutathione. Moreover, the uptake and cytotoxic activity of doxorubicin-loaded FTC-coated liposomes was evaluated on murine B16-F10 and human SKMEL2 melanoma cancer cells. Results demonstrated enhanced uptake and antitumor efficacy of FTC-coated liposomes compared to control chitosan-coated liposomes in both cancer lines, which is attributed to higher cellular uptake via folate receptor-mediated endocytosis and to triggered drug release by the reductive microenvironment of tumor cells. The proposed novel liposomes show great potential as nanocarriers for targeted therapy of cancer. Full article
(This article belongs to the Special Issue Recent Trends in Nano-Based Drug Delivery Systems)
Show Figures

Figure 1

15 pages, 884 KiB  
Article
An Analytical Target Profile for the Development of an In Vitro Release Test Method and Apparatus Selection in the Case of Semisolid Topical Formulations
by Réka Szoleczky, Anita Kovács, Szilvia Berkó and Mária Budai-Szűcs
Pharmaceutics 2024, 16(3), 313; https://doi.org/10.3390/pharmaceutics16030313 - 23 Feb 2024
Viewed by 719
Abstract
This study focuses on how to define an Analytical Target Profile (ATP) which is intended for use in practice and on facilitating the selection of in vitro release test (IVRT) technology for diclofenac sodium topical hydrogel and cream. The implementation involves incorporating the [...] Read more.
This study focuses on how to define an Analytical Target Profile (ATP) which is intended for use in practice and on facilitating the selection of in vitro release test (IVRT) technology for diclofenac sodium topical hydrogel and cream. The implementation involves incorporating the new draft guidelines of the International Council for Harmonisation (ICH Q14) and USP (United States Pharmacopeia) Chapter 1220. Four IVRT apparatuses were compared (USP Apparatus II with immersion cell, USP Apparatus IV with semisolid adapter, static vertical diffusion cell, and a new, in-house-developed flow-through diffusion cell) with the help of the ATP. Performance characteristics such as accuracy, precision, cumulative amount released at the end of the IVRT experiment, and robustness were investigated. We found that the best apparatus for developing IVRT quality control (QC) tests in both cases was USP II with an immersion cell. All four different IVRT apparatuses were compared with each other and with the data found in the literature. Full article
(This article belongs to the Special Issue Topical Drug Delivery: Current Status and Perspectives)
Show Figures

Figure 1

13 pages, 914 KiB  
Review
Ranibizumab Port Delivery System in Neovascular Age-Related Macular Degeneration: Where Do We Stand? Overview of Pharmacokinetics, Clinical Results, and Future Directions
by Matteo Mario Carlà, Maria Cristina Savastano, Francesco Boselli, Federico Giannuzzi and Stanislao Rizzo
Pharmaceutics 2024, 16(3), 314; https://doi.org/10.3390/pharmaceutics16030314 - 23 Feb 2024
Viewed by 756
Abstract
The ranibizumab (RBZ) port delivery system (PDS) is a device designed to continuously deliver RBZ in the vitreous chamber for the treatment of neovascular age-related macular degeneration (nAMD). It is implanted during a surgical procedure and can provide sustained release of the medication [...] Read more.
The ranibizumab (RBZ) port delivery system (PDS) is a device designed to continuously deliver RBZ in the vitreous chamber for the treatment of neovascular age-related macular degeneration (nAMD). It is implanted during a surgical procedure and can provide sustained release of the medication for several months. This review, updated to January 2024, focuses on past clinical studies as well as current and forthcoming trials looking into a PDS with RBZ. In the phase 2 LADDER trial, the mean time to first refill of a PDS with RBZ 100 mg/mL was 15.8 months, with the pharmacokinetic (PK) profile showing a sustained concentration of RBZ in the blood and aqueous humor. More recently, a PDS with RBZ (100 mg/mL) refilled every 24 weeks was shown to be non-inferior to a monthly intravitreal injection (IVI) with RBZ (0.5 mg) over 40 and 92 weeks in the phase 3 ARCHWAY trial. The refill every 24 weeks allowed for a RBZ vitreous exposure within the concentration range of monthly intravitreal injections (IVIs), and the expected half-life (106 days) was comparable with the in vitro results. Nonetheless, vitreous hemorrhage and endophthalmitis were more common side effects in PDS patients. In conclusion, a PDS continuously delivering RBZ has a clinical effectiveness level comparable with IVI treatment. However, a greater frequency of unfavorable occurrences highlights the need for procedure optimization for a wider adoption. Ongoing trials and possible future approaches need to be addressed. Full article
(This article belongs to the Special Issue Controlled-Release Systems for Ophthalmic Applications)
Show Figures

Figure 1

26 pages, 1660 KiB  
Review
Extracellular Vesicles in Therapeutics: A Comprehensive Review on Applications, Challenges, and Clinical Progress
by Jiyoung Goo, Yeji Lee, Jeongmin Lee, In-San Kim and Cherlhyun Jeong
Pharmaceutics 2024, 16(3), 311; https://doi.org/10.3390/pharmaceutics16030311 - 22 Feb 2024
Viewed by 911
Abstract
Small Extracellular Vesicles (sEVs) are typically 30–150 nm in diameter, produced inside cells, and released into the extracellular space. These vesicles carry RNA, DNA, proteins, and lipids that reflect the characteristics of their parent cells, enabling communication between cells and the alteration of [...] Read more.
Small Extracellular Vesicles (sEVs) are typically 30–150 nm in diameter, produced inside cells, and released into the extracellular space. These vesicles carry RNA, DNA, proteins, and lipids that reflect the characteristics of their parent cells, enabling communication between cells and the alteration of functions or differentiation of target cells. Owing to these properties, sEVs have recently gained attention as potential carriers for functional molecules and drug delivery tools. However, their use as a therapeutic platform faces limitations, such as challenges in mass production, purity issues, and the absence of established protocols and characterization methods. To overcome these, researchers are exploring the characterization and engineering of sEVs for various applications. This review discusses the origins of sEVs and their engineering for therapeutic effects, proposing areas needing intensive study. It covers the use of cell-derived sEVs in their natural state and in engineered forms for specific purposes. Additionally, the review details the sources of sEVs and their subsequent purification methods. It also outlines the potential of therapeutic sEVs and the requirements for successful clinical trials, including methods for large-scale production and purification. Finally, we discuss the progress of ongoing clinical trials and the implications for future healthcare, offering a comprehensive overview of the latest research in sEV applications. Full article
(This article belongs to the Special Issue Exosome-Based Drug Delivery: Translation from Bench to Clinic)
Show Figures

Figure 1

15 pages, 2644 KiB  
Article
Electrospun Polyvinylpyrrolidone-Based Dressings Containing GO/ZnO Nanocomposites: A Novel Frontier in Antibacterial Wound Care
by Cristina Martín, Adalyz Ferreiro Fernández, Julia C. Salazar Romero, Juan P. Fernández-Blázquez, Jabier Mendizabal, Koldo Artola, José L. Jorcano and M. Eugenia Rabanal
Pharmaceutics 2024, 16(3), 305; https://doi.org/10.3390/pharmaceutics16030305 - 22 Feb 2024
Viewed by 968
Abstract
In recent years, the rapid emergence of antibiotic-resistant bacteria has become a significant concern in the healthcare field, and although bactericidal dressings loaded with various classes of antibiotics have been used in clinics, in addition to other anti-infective strategies, this alarming issue necessitates [...] Read more.
In recent years, the rapid emergence of antibiotic-resistant bacteria has become a significant concern in the healthcare field, and although bactericidal dressings loaded with various classes of antibiotics have been used in clinics, in addition to other anti-infective strategies, this alarming issue necessitates the development of innovative strategies to combat bacterial infections and promote wound healing. Electrospinning technology has gained significant attention as a versatile method for fabricating advanced wound dressings with enhanced functionalities. This work is based on the generation of polyvinylpyrrolidone (PVP)-based dressings through electrospinning, using a DomoBIO4A bioprinter, and incorporating graphene oxide (GO)/zinc oxide (ZnO) nanocomposites as a potent antibacterial agent. GO and ZnO nanoparticles offer unique properties, including broad-spectrum antibacterial activity for improved wound healing capabilities. The synthesis process was performed in an inexpensive one-pot reaction, and the nanocomposites were thoroughly characterized using XRD, TEM, EDX, SEM, EDS, and TGA. The antibacterial activity of the dispersions was demonstrated against E. coli and B. subtilis, Gram-negative and Gram-positive bacteria, respectively, using the well diffusion method and the spread plate method. Bactericidal mats were synthesized in a rapid and cost-effective manner, and the fiber-based structure of the electrospun dressings was studied by SEM. Evaluations of their antibacterial efficacy against E. coli and B. subtilis were explored by the disk-diffusion method, revealing an outstanding antibacterial capacity, especially against the Gram-positive strain. Overall, the findings of this research contribute to the development of next-generation wound dressings that effectively combat bacterial infections and pave the way for advanced therapeutic interventions in the field of wound care. Full article
(This article belongs to the Special Issue Metal and Carbon Nanomaterials for Pharmaceutical Applications)
Show Figures

Graphical abstract

14 pages, 7476 KiB  
Article
Solid Dispersions of Genistein via Solvent Rotary Evaporation for Improving Solubility, Bioavailability, and Amelioration Effect in HFD-Induced Obesity Mice
by Chenxu Qiu, Yancui Zhang, Yingsai Fan, Shupeng Li, Jianting Gao, Xin He and Xinghua Zhao
Pharmaceutics 2024, 16(3), 306; https://doi.org/10.3390/pharmaceutics16030306 - 22 Feb 2024
Viewed by 738
Abstract
Genistein (GEN) is an active pharmaceutical ingredient that presents the challenges of poor water solubility and low oral bioavailability. To tackle these challenges, a GEN solid dispersion was prepared by solvent rotary evaporation using polyvinylpyrrolidone K30 (PVP K30) as a carrier. The optimal [...] Read more.
Genistein (GEN) is an active pharmaceutical ingredient that presents the challenges of poor water solubility and low oral bioavailability. To tackle these challenges, a GEN solid dispersion was prepared by solvent rotary evaporation using polyvinylpyrrolidone K30 (PVP K30) as a carrier. The optimal formulation was determined by drug loading efficiency and in vitro release. The physical state of the solid dispersion was characterized by DSC, XRD, SEM and FT-IR. And the results of the in vitro release study indicate that the drug release of SD (1:7) increased 482-fold that of pure GEN at 60 min. Following oral administration to rats, the Cmax and AUC0–24 of SD (1:7) was increased 6.86- and 2.06-fold to that of pure GEN. The adipose fat index and body weight of the SD (1:7) group were significantly lower than those of the GEN group (p < 0.05). Meanwhile, the levels of TC and TG in the serum were significantly decreased in the SD (1:7) group compared with the GEN group (p < 0.05). All experiments revealed that solid dispersion could be a promising formulation approach to improve the dissolution rate, oral bioavailability, and effect on the reduction of lipid accumulation in high-fat diet-induced obesity mice. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

17 pages, 1331 KiB  
Systematic Review
Influence of Photosensitizer on Photodynamic Therapy for Peri-Implantitis: A Systematic Review
by Thaís B. M. O. Schweigert, João P. R. Afonso, Renata K. da Palma, Iransé Oliveira-Silva, Carlos H. M. Silva, Elias Ilias Jirjos, Wilson Rodrigues Freitas Júnior, Giuseppe Insalaco, Orlando A. Guedes and Luís V. F. Oliveira
Pharmaceutics 2024, 16(3), 307; https://doi.org/10.3390/pharmaceutics16030307 - 22 Feb 2024
Viewed by 796
Abstract
The treatment of peri-implantitis is challenging in the clinical practice of implant dentistry. With limited therapeutic options and drug resistance, there is a need for alternative methods, such as photodynamic therapy (PDT), which is a minimally invasive procedure used to treat peri-implantitis. This [...] Read more.
The treatment of peri-implantitis is challenging in the clinical practice of implant dentistry. With limited therapeutic options and drug resistance, there is a need for alternative methods, such as photodynamic therapy (PDT), which is a minimally invasive procedure used to treat peri-implantitis. This study evaluated whether the type of photosensitizer used influences the results of inflammatory control, reduction in peri-implant pocket depth, bleeding during probing, and reduction in bone loss in the dental implant region. We registered the study in the PROSPERO (International Prospective Register of Systematic Review) database. We searched three main databases and gray literature in English without date restrictions. In vivo randomized clinical studies involving individuals with peri-implantitis, smokers, patients with diabetes, and healthy controls were included. PDT was used as the primary intervention. Comparators considered mechanical debridement with a reduction in pocket depth as the primary outcome and clinical attachment level, bleeding on probing, gingival index, plaque index, and microbiological analysis as secondary outcomes. After reviewing the eligibility criteria, we included seven articles out of 266. A great variety of photosensitizers were observed, and it was concluded that the selection of the most appropriate type of photosensitizer must consider the patient’s characteristics and peri-implantitis conditions. The effectiveness of PDT, its effects on the oral microbiome, and the clinical patterns of peri-implantitis may vary depending on the photosensitizer chosen, which is a crucial factor in personalizing peri-implantitis treatment. Full article
(This article belongs to the Special Issue Photodynamic Therapy: Rising Star in Pharmaceutical Applications)
Show Figures

Figure 1

25 pages, 12971 KiB  
Article
Microneedle-Assisted Transdermal Delivery of Lurasidone Nanoparticles
by Ariana Radmard and Ajay K. Banga
Pharmaceutics 2024, 16(3), 308; https://doi.org/10.3390/pharmaceutics16030308 - 22 Feb 2024
Viewed by 993
Abstract
Lurasidone, an antipsychotic medication for schizophrenia, is administered daily via oral intake. Adherence is a critical challenge, given that many schizophrenia patients deny their condition, thus making alternative delivery methods desirable. This study aimed to deliver lurasidone by the transdermal route and provide [...] Read more.
Lurasidone, an antipsychotic medication for schizophrenia, is administered daily via oral intake. Adherence is a critical challenge, given that many schizophrenia patients deny their condition, thus making alternative delivery methods desirable. This study aimed to deliver lurasidone by the transdermal route and provide therapeutic effects for three days. Passive diffusion was found to be insufficient for lurasidone delivery. The addition of chemical enhancers increased permeation, but it was still insufficient to reach the designed target dose from a patch, so a microneedle patch array was fabricated by using biodegradable polymers. For prolonged and effective delivery, the drug was encapsulated in Poly (lactic-co-glycolic acid) (PLGA) nanoparticles which were made using the solvent evaporation method and incorporated in microneedles. Effervescent technology was also employed in the preparation of the microneedle patch to facilitate the separation of the needle tip from the patch. Once separated, only the needle tip remains embedded in the skin, thus preventing premature removal by the patient. The microneedles demonstrated robust preformation in a characterization test evaluating their insertion capacity, mechanical strength, and the uniformity of microneedle arrays, and were able to deliver a dose equivalent to 20 mg oral administration. Therefore, the potential of a transdermal delivery system for lurasidone using microneedles with nanoparticles was demonstrated. Full article
Show Figures

Graphical abstract

11 pages, 239 KiB  
Article
Drug–Drug Interactions in Patients with Acute Respiratory Distress Syndrome
by Thorsten Bischof, Christoph Schaller, Nina Buchtele, Thomas Staudinger, Roman Ullrich, Felix Kraft, Marine L. Andersson, Bernd Jilma and Christian Schoergenhofer
Pharmaceutics 2024, 16(3), 303; https://doi.org/10.3390/pharmaceutics16030303 - 21 Feb 2024
Viewed by 759
Abstract
Acute respiratory distress syndrome (ARDS) is a potential life-threatening, heterogenous, inflammatory lung disease. There are no data available on potential drug–drug interactions (pDDIs) in critically ill patients with ARDS. This study analyzed pDDIs in this specific cohort and aimed to investigate possible associations [...] Read more.
Acute respiratory distress syndrome (ARDS) is a potential life-threatening, heterogenous, inflammatory lung disease. There are no data available on potential drug–drug interactions (pDDIs) in critically ill patients with ARDS. This study analyzed pDDIs in this specific cohort and aimed to investigate possible associations of coronavirus disease 2019 (COVID-19) as an underlying cause of ARDS and treatment with extracorporeal membrane oxygenation (ECMO) with the occurrence of pDDIs. This retrospective study included patients ≥18 years of age diagnosed with ARDS between January 2010 and September 2021. The Janusmed database was used for the identification of pDDIs. A total of 2694 pDDIs were identified in 189 patients with a median treatment duration of 22 days. These included 323 (12%) clinically relevant drug combinations that are best avoided, corresponding to a median rate of 0.05 per day. There was no difference in the number of pDDIs between COVID-19- and non-COVID-19-associated ARDS. In patients treated with ECMO, the rate of the most severely graded pDDIs per day was significantly higher compared with those who did not require ECMO. PDDIs occur frequently in patients with ARDS. On average, each patient may encounter at least one clinically relevant drug combination that should be avoided during their intensive care unit stay. Full article
22 pages, 9747 KiB  
Article
Exploring the Effects of Process Parameters during W/O/W Emulsion Preparation and Supercritical Fluid Extraction on the Protein Encapsulation and Release Properties of PLGA Microspheres
by Heejun Park
Pharmaceutics 2024, 16(3), 302; https://doi.org/10.3390/pharmaceutics16030302 - 21 Feb 2024
Viewed by 901
Abstract
In this study, protein-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared via supercritical fluid extraction of emulsion (SFEE) technology. To understand the correlation between process parameters and the main quality characteristics of PLGA microspheres, a comprehensive prior study on the influence of process variables [...] Read more.
In this study, protein-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared via supercritical fluid extraction of emulsion (SFEE) technology. To understand the correlation between process parameters and the main quality characteristics of PLGA microspheres, a comprehensive prior study on the influence of process variables on encapsulation efficiency (EE), initial drug burst release (IBR), morphology, surface property, and particle size distribution (PSD) was conducted within a wide process condition range of each unit process step, from the double-emulsion preparation step to the extraction step. Bovine serum albumin (BSA), a high-molecular weight-protein that is difficult to control the IBR and EE of PLGA microspheres with, was used as a model material. As double-emulsion manufacturing process parameters, the primary (W/O) and secondary emulsion (W/O/W) homogenization speed and secondary emulsification time were evaluated. In addition, the effect of the SFEE process parameters, including the pressure (70–160 bar), temperature (35–65 °C), stirring rate (50–1000 rpm), and flow rate of supercritical carbon dioxide, SC-CO2 (1–40 mL/min), on PLGA microsphere quality properties were also evaluated. An increase in the homogenization speed of the primary emulsion resulted in an increase in EE and a decrease in IBR. In contrast, increasing the secondary emulsification speed resulted in a decrease in EE and an increase in IBR along with a decrease in microsphere size. The insufficient secondary emulsification time resulted in excessive increases in particle size, and excessive durations resulted in decreased EE and increased IBR. Increasing the temperature and pressure of SFEE resulted in an overall increase in particle size, a decrease in EE, and an increase in IBR. It was observed that, at low stirring rates or SC-CO2 flow rates, there was an increase in particle size and SPAN value, while the EE decreased. Overall, when the EE of the prepared microspheres is low, a higher proportion of drugs is distributed on the external surface of the microspheres, resulting in a larger IBR. In conclusion, this study contributes to the scientific understanding of the influence of SFEE process variables on PLGA microspheres. Full article
(This article belongs to the Special Issue Supercritical Techniques for Pharmaceutical Applications)
Show Figures

Figure 1

19 pages, 1856 KiB  
Review
Precise Therapy Using the Selective Endogenous Encapsidation for Cellular Delivery Vector System
by Vacis Tatarūnas, Ieva Čiapienė and Agnė Giedraitienė
Pharmaceutics 2024, 16(2), 292; https://doi.org/10.3390/pharmaceutics16020292 - 19 Feb 2024
Viewed by 1422
Abstract
Interindividual variability in drug response is a major problem in the prescription of pharmacological treatments. The therapeutic effect of drugs can be influenced by human genes. Pharmacogenomic guidelines for individualization of treatment have been validated and used for conventional dosage forms. However, drugs [...] Read more.
Interindividual variability in drug response is a major problem in the prescription of pharmacological treatments. The therapeutic effect of drugs can be influenced by human genes. Pharmacogenomic guidelines for individualization of treatment have been validated and used for conventional dosage forms. However, drugs can often target non-specific areas and produce both desired and undesired pharmacological effects. The use of nanoparticles, liposomes, or other available forms for drug formulation could help to overcome the latter problem. Virus-like particles based on retroviruses could be a potential envelope for safe and efficient drug formulations. Human endogenous retroviruses would make it possible to overcome the host immune response and deliver drugs to the desired target. PEG10 is a promising candidate that can bind to mRNA because it is secreted like an enveloped virus-like extracellular vesicle. PEG10 is a retrotransposon-derived gene that has been domesticated. Therefore, formulations with PEG10 may have a lower immunogenicity. The use of existing knowledge can lead to the development of suitable drug formulations for the precise treatment of individual diseases. Full article
(This article belongs to the Special Issue New Pharmaceutical Formulations for Personalized Therapies)
Show Figures

Figure 1

20 pages, 1059 KiB  
Systematic Review
Biological Properties and Medical Applications of Carbonate Apatite: A Systematic Review
by Ralitsa Yotsova and Stefan Peev
Pharmaceutics 2024, 16(2), 291; https://doi.org/10.3390/pharmaceutics16020291 - 18 Feb 2024
Viewed by 1279
Abstract
Bone defects represent an everyday challenge for clinicians who work in the fields of orthopedic surgery, maxillofacial and oral surgery, otorhinolaryngology, and dental implantology. Various bone substitutes have been developed and utilized, according to the needs of bone reconstructive surgery. Carbonate apatite has [...] Read more.
Bone defects represent an everyday challenge for clinicians who work in the fields of orthopedic surgery, maxillofacial and oral surgery, otorhinolaryngology, and dental implantology. Various bone substitutes have been developed and utilized, according to the needs of bone reconstructive surgery. Carbonate apatite has gained popularity in recent years, due to its excellent tissue behavior and osteoconductive potential. This systematic review aims to evaluate the role of carbonate apatite in bone reconstructive surgery and tissue engineering, analyze its advantages and limitations, and suggest further directions for research and development. The Web of Science, PubMed, and Scopus electronic databases were searched for relevant review articles, published from January 2014 to 21 July 2023. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eighteen studies were included in the present review. The biological properties and medical applications of carbonate apatite (CO3Ap) are discussed and evaluated. The majority of articles demonstrated that CO3Ap has excellent biocompatibility, resorbability, and osteoconductivity. Furthermore, it resembles bone tissue and causes minimal immunological reactions. Therefore, it may be successfully utilized in various medical applications, such as bone substitution, scaffolding, implant coating, drug delivery, and tissue engineering. Full article
(This article belongs to the Special Issue Biomedical Applications: Advances in Bioengineering and Drug Delivery)
Show Figures

Figure 1

19 pages, 2945 KiB  
Article
Intranasal Delivery of Anti-Apoptotic siRNA Complexed with Fas-Signaling Blocking Peptides Attenuates Cellular Apoptosis in Brain Ischemia
by Kunho Chung, Irfan Ullah, Yujong Yi, Eunhwa Kang, Gyeongju Yun, Seoyoun Heo, Minkyung Kim, Seong-Eun Chung, Seongjun Park, Jaeyeoung Lim, Minhyung Lee, Taiyoun Rhim and Sang-Kyung Lee
Pharmaceutics 2024, 16(2), 290; https://doi.org/10.3390/pharmaceutics16020290 - 18 Feb 2024
Viewed by 917
Abstract
Ischemic stroke-induced neuronal cell death leads to the permanent impairment of brain function. The Fas-mediating extrinsic apoptosis pathway and the cytochrome c-mediating intrinsic apoptosis pathway are two major molecular mechanisms contributing to neuronal injury in ischemic stroke. In this study, we employed a [...] Read more.
Ischemic stroke-induced neuronal cell death leads to the permanent impairment of brain function. The Fas-mediating extrinsic apoptosis pathway and the cytochrome c-mediating intrinsic apoptosis pathway are two major molecular mechanisms contributing to neuronal injury in ischemic stroke. In this study, we employed a Fas-blocking peptide (FBP) coupled with a positively charged nona-arginine peptide (9R) to form a complex with negatively charged siRNA targeting Bax (FBP9R/siBax). This complex is specifically designed to deliver siRNA to Fas-expressing ischemic brain cells. This complex enables the targeted inhibition of Fas-mediating extrinsic apoptosis pathways and cytochrome c-mediating intrinsic apoptosis pathways. Specifically, the FBP targets the Fas/Fas ligand signaling, while siBax targets Bax involved in mitochondria disruption in the intrinsic pathway. The FBP9R carrier system enables the delivery of functional siRNA to hypoxic cells expressing the Fas receptor on their surface—a finding validated through qPCR and confocal microscopy analyses. Through intranasal (IN) administration of FBP9R/siCy5 to middle cerebral artery occlusion (MCAO) ischemic rat models, brain imaging revealed the complex specifically localized to the Fas-expressing infarcted region but did not localize in the non-infarcted region of the brain. A single IN administration of FBP9R/siBax demonstrated a significant reduction in neuronal cell death by effectively inhibiting Fas signaling and preventing the release of cytochrome c. The targeted delivery of FBP9R/siBax represents a promising alternative strategy for the treatment of brain ischemia. Full article
(This article belongs to the Special Issue Nasal Drug Delivery: Challenges and Future Opportunities)
Show Figures

Figure 1

46 pages, 9227 KiB  
Review
Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications
by Sara Yazdani, Mehrdad Mozaffarian, Gholamreza Pazuki, Naghmeh Hadidi, Ilia Villate-Beitia, Jon Zárate, Gustavo Puras and Jose Luis Pedraz
Pharmaceutics 2024, 16(2), 288; https://doi.org/10.3390/pharmaceutics16020288 - 18 Feb 2024
Viewed by 1724
Abstract
Gene therapeutics are promising for treating diseases at the genetic level, with some already validated for clinical use. Recently, nanostructures have emerged for the targeted delivery of genetic material. Nanomaterials, exhibiting advantageous properties such as a high surface-to-volume ratio, biocompatibility, facile functionalization, substantial [...] Read more.
Gene therapeutics are promising for treating diseases at the genetic level, with some already validated for clinical use. Recently, nanostructures have emerged for the targeted delivery of genetic material. Nanomaterials, exhibiting advantageous properties such as a high surface-to-volume ratio, biocompatibility, facile functionalization, substantial loading capacity, and tunable physicochemical characteristics, are recognized as non-viral vectors in gene therapy applications. Despite progress, current non-viral vectors exhibit notably low gene delivery efficiency. Progress in nanotechnology is essential to overcome extracellular and intracellular barriers in gene delivery. Specific nanostructures such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), nanodiamonds (NDs), and similar carbon-based structures can accommodate diverse genetic materials such as plasmid DNA (pDNA), messenger RNA (mRNA), small interference RNA (siRNA), micro RNA (miRNA), and antisense oligonucleotides (AONs). To address challenges such as high toxicity and low transfection efficiency, advancements in the features of carbon-based nanostructures (CBNs) are imperative. This overview delves into three types of CBNs employed as vectors in drug/gene delivery systems, encompassing their synthesis methods, properties, and biomedical applications. Ultimately, we present insights into the opportunities and challenges within the captivating realm of gene delivery using CBNs. Full article
(This article belongs to the Special Issue Metal and Carbon Nanomaterials for Pharmaceutical Applications)
Show Figures

Figure 1

19 pages, 1883 KiB  
Review
The Necessity to Investigate In Vivo Fate of Nanoparticle-Loaded Dissolving Microneedles
by Ziyao Chang, Yuhuan Wu, Ping Hu, Junhuang Jiang, Guilan Quan, Chuanbin Wu, Xin Pan and Zhengwei Huang
Pharmaceutics 2024, 16(2), 286; https://doi.org/10.3390/pharmaceutics16020286 - 17 Feb 2024
Viewed by 1126
Abstract
Transdermal drug delivery systems are rapidly gaining prominence and have found widespread application in the treatment of numerous diseases. However, they encounter the challenge of a low transdermal absorption rate. Microneedles can overcome the stratum corneum barrier to enhance the transdermal absorption rate. [...] Read more.
Transdermal drug delivery systems are rapidly gaining prominence and have found widespread application in the treatment of numerous diseases. However, they encounter the challenge of a low transdermal absorption rate. Microneedles can overcome the stratum corneum barrier to enhance the transdermal absorption rate. Among various types of microneedles, nanoparticle-loaded dissolving microneedles (DMNs) present a unique combination of advantages, leveraging the strengths of DMNs (high payload, good mechanical properties, and easy fabrication) and nanocarriers (satisfactory solubilization capacity and a controlled release profile). Consequently, they hold considerable clinical application potential in the precision medicine era. Despite this promise, no nanoparticle-loaded DMN products have been approved thus far. The lack of understanding regarding their in vivo fate represents a critical bottleneck impeding the clinical translation of relevant products. This review aims to elucidate the current research status of the in vivo fate of nanoparticle-loaded DMNs and elaborate the necessity to investigate the in vivo fate of nanoparticle-loaded DMNs from diverse aspects. Furthermore, it offers insights into potential entry points for research into the in vivo fate of nanoparticle-loaded DMNs, aiming to foster further advancements in this field. Full article
(This article belongs to the Special Issue Recent Advances in Microneedle-Mediated Drug Delivery, 2nd Edition)
Show Figures

Figure 1

20 pages, 3000 KiB  
Article
New Multitarget Rivastigmine–Indole Hybrids as Potential Drug Candidates for Alzheimer’s Disease
by Leo Bon, Angelika Banaś, Inês Dias, Inês Melo-Marques, Sandra M. Cardoso, Sílvia Chaves and M. Amélia Santos
Pharmaceutics 2024, 16(2), 281; https://doi.org/10.3390/pharmaceutics16020281 - 16 Feb 2024
Viewed by 872
Abstract
Alzheimer’s disease (AD) is the most common form of dementia with no cure so far, probably due to the complexity of this multifactorial disease with diverse processes associated with its origin and progress. Several neuropathological hallmarks have been identified that encourage the search [...] Read more.
Alzheimer’s disease (AD) is the most common form of dementia with no cure so far, probably due to the complexity of this multifactorial disease with diverse processes associated with its origin and progress. Several neuropathological hallmarks have been identified that encourage the search for new multitarget drugs. Therefore, following a multitarget approach, nine rivastigmine–indole (RIV-IND) hybrids (5a1-3, 5b1-3, 5c1-3) were designed, synthesized and evaluated for their multiple biological properties and free radical scavenging activity, as potential multitarget anti-AD drugs. The molecular docking studies of these hybrids on the active center of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) suggest their capacity to act as dual enzyme inhibitors with probable greater disease-modifying impact relative to AChE-selective FDA-approved drugs. Compounds 5a3 (IC50 = 10.9 µM) and 5c3 (IC50 = 26.8 µM) revealed higher AChE inhibition than the parent RIV drug. Radical scavenging assays demonstrated that all the hybrids containing a hydroxyl substituent in the IND moiety (5a2-3, 5b2-3, 5c2-3) have good antioxidant activity (EC50 7.8–20.7 µM). The most effective inhibitors of Aβ42 self-aggregation are 5a3, 5b3 and 5c3 (47.8–55.5%), and compounds 5b2 and 5c2 can prevent the toxicity induced by Aβ1-42 to cells. The in silico evaluation of the drug-likeness of the hybrids also showed that all the compounds seem to have potential oral availability. Overall, within this class of RIV-IND hybrids, 5a3 and 5c3 appear as lead compounds for anti-AD drug candidates, deserving further investigation. Full article
Show Figures

Graphical abstract

20 pages, 4286 KiB  
Article
Chitosan and Anionic Solubility Enhancer Sulfobutylether-β-Cyclodextrin-Based Nanoparticles as Dexamethasone Ophthalmic Delivery System for Anti-Inflammatory Therapy
by Giuseppe Francesco Racaniello, Gennaro Balenzano, Ilaria Arduino, Rosa Maria Iacobazzi, Antonio Lopalco, Angela Assunta Lopedota, Hakon Hrafn Sigurdsson and Nunzio Denora
Pharmaceutics 2024, 16(2), 277; https://doi.org/10.3390/pharmaceutics16020277 - 16 Feb 2024
Cited by 1 | Viewed by 1065
Abstract
Cataract surgery interventions are constantly increasing, particularly among adult and elderly patients. This type of surgery can lead to inflammatory states of the ocular anterior segment (AS), usually healed via postoperative treatment with dexamethasone (DEX)-containing eye drops. The application of eye drops is [...] Read more.
Cataract surgery interventions are constantly increasing, particularly among adult and elderly patients. This type of surgery can lead to inflammatory states of the ocular anterior segment (AS), usually healed via postoperative treatment with dexamethasone (DEX)-containing eye drops. The application of eye drops is challenging due to the high number of daily administrations. In this study, mucoadhesive nanoparticles (NPs) were formulated to improve the residence time of DEX on the corneal mucosa, enhancing the drug’s solubility and bioavailability. The NPs were generated using an ionotropic gelation technique, exploiting the interaction between the cationic group of chitosan (CS) and the anionic group of sulfobutylether-β-cyclodextrin (SBE-β-CD). The formation of the inclusion complex and its stoichiometry were studied through phase solubility studies, Job’s plot method, and Bi-directional transport studies on MDCKII-MDR1. The obtained NPs showed good chemical and physical characteristics suitable for drug loading and subsequent testing on animal mucosa. The DEX-loaded CS/SBE-β-CD NPs exhibited a prolonged residence time on animal mucosa and demonstrated enhanced drug permeability through the corneal membrane, showing a sustained release profile. The developed NPs posed no irritation or toxicity concerns upon local administration, making them an optimal and innovative drug delivery system for inflammatory AS diseases treatment. Full article
(This article belongs to the Special Issue Development of Chitosan/Cyclodextrins in Drug Delivery Field)
Show Figures

Graphical abstract

21 pages, 9678 KiB  
Article
Triphenylphosphonium-Functionalized Gold Nanorod/Zinc Oxide Core–Shell Nanocomposites for Mitochondrial-Targeted Phototherapy
by Ara Joe, Hyo-Won Han, Yu-Ra Lim, Panchanathan Manivasagan and Eue-Soon Jang
Pharmaceutics 2024, 16(2), 284; https://doi.org/10.3390/pharmaceutics16020284 - 16 Feb 2024
Cited by 1 | Viewed by 893
Abstract
Phototherapies, such as photothermal therapy (PTT) and photodynamic therapy (PDT), combined with novel all-in-one light-responsive nanocomposites have recently emerged as new therapeutic modalities for the treatment of cancer. Herein, we developed novel all-in-one triphenylphosphonium-functionalized gold nanorod/zinc oxide core–shell nanocomposites (CTPP-GNR@ZnO) for mitochondrial-targeted PTT/PDT [...] Read more.
Phototherapies, such as photothermal therapy (PTT) and photodynamic therapy (PDT), combined with novel all-in-one light-responsive nanocomposites have recently emerged as new therapeutic modalities for the treatment of cancer. Herein, we developed novel all-in-one triphenylphosphonium-functionalized gold nanorod/zinc oxide core–shell nanocomposites (CTPP-GNR@ZnO) for mitochondrial-targeted PTT/PDT owing to their good biocompatibility, tunable and high optical absorption, photothermal conversion efficiency, highest reactive oxygen species (ROS) generation, and high mitochondrial-targeting capability. Under laser irradiation of 780 nm, the CTPP-GNR@ZnO core–shell nanocomposites effectively produced heat in addition to generating ROS to induce cell death, implying a synergistic effect of mild PTT and PDT in combating cancer. Notably, the in vitro PTT/PDT effect of CTPP-GNR@ZnO core–shell nanocomposites exhibited effective cell ablation (95%) and induced significant intracellular ROS after the 780 nm laser irradiation for 50 min, indicating that CTPP in CTPP-GNR@ZnO core–shell nanocomposites can specifically target the mitochondria of CT-26 cells, as well as generate heat and ROS to completely kill cancer cells. Overall, this light-responsive nanocomposite-based phototherapy provides a new approach for cancer synergistic therapy. Full article
(This article belongs to the Special Issue Metal Nanoparticles for Cancer Therapy, 2nd Edition)
Show Figures

Figure 1

42 pages, 2857 KiB  
Review
Chemical Insights into Topical Agents in Intraocular Pressure Management: From Glaucoma Etiopathology to Therapeutic Approaches
by Geewoo Nam Patton and Hyuck Jin Lee
Pharmaceutics 2024, 16(2), 274; https://doi.org/10.3390/pharmaceutics16020274 - 15 Feb 2024
Viewed by 880
Abstract
Glaucoma encompasses a group of optic neuropathies characterized by complex and often elusive etiopathology, involvihttng neurodegeneration of the optic nerve in conjunction with abnormal intraocular pressure (IOP). Currently, there is no cure for glaucoma, and treatment strategies primarily aim to halt disease progression [...] Read more.
Glaucoma encompasses a group of optic neuropathies characterized by complex and often elusive etiopathology, involvihttng neurodegeneration of the optic nerve in conjunction with abnormal intraocular pressure (IOP). Currently, there is no cure for glaucoma, and treatment strategies primarily aim to halt disease progression by managing IOP. This review delves into the etiopathology, diagnostic methods, and treatment approaches for glaucoma, with a special focus on IOP management. We discuss a range of active pharmaceutical ingredients used in glaucoma therapy, emphasizing their chemical structure, pharmacological action, therapeutic effectiveness, and safety/tolerability profiles. Notably, most of these therapeutic agents are administered as topical formulations, a critical aspect considering patient compliance and drug delivery efficiency. The classes of glaucoma therapeutics covered in this review include prostaglandin analogs, beta blockers, alpha agonists, carbonic anhydrase inhibitors, Rho kinase inhibitors, and miotic (cholinergic) agents. This comprehensive overview highlights the importance of topical administration in glaucoma treatment, offering insights into the current state and future directions of pharmacological management in glaucoma. Full article
(This article belongs to the Special Issue Topical Drug Delivery: Current Status and Perspectives)
Show Figures

Figure 1

38 pages, 8570 KiB  
Article
Development and Characterization of New Miconazole-Based Microemulsions for Buccal Delivery by Implementing a Full Factorial Design Modeling
by Marina-Theodora Talianu, Cristina-Elena Dinu-Pîrvu, Mihaela Violeta Ghica, Valentina Anuţa, Răzvan Mihai Prisada and Lăcrămioara Popa
Pharmaceutics 2024, 16(2), 271; https://doi.org/10.3390/pharmaceutics16020271 - 14 Feb 2024
Viewed by 1030
Abstract
This research aimed to develop miconazole-based microemulsions using oleic acid as a natural lipophilic phase and a stabilizer mixture comprising Tween 20 and PEG 400 to solubilize miconazole as an antifungal agent known for its activity in oral candidiasis and to improve its [...] Read more.
This research aimed to develop miconazole-based microemulsions using oleic acid as a natural lipophilic phase and a stabilizer mixture comprising Tween 20 and PEG 400 to solubilize miconazole as an antifungal agent known for its activity in oral candidiasis and to improve its bioavailability. The formulation and preparation process was combined with a mathematical approach using a 23-full factorial plan. Fluid and gel-like microemulsions were obtained and analyzed considering pH, conductivity, and refractive index, followed by extensive analyses focused on droplet size, zeta potential, rheological behavior, and goniometry. In vitro release tests were performed to assess their biopharmaceutical characteristics. Independent variables coded X1-Oleic acid (%, w/w), X2-Tween 20 (%, w/w), and X3-PEG 400 (%, w/w) were analyzed in relationship with three main outputs like mean droplet size, work of adhesion, and diffusion coefficient by combining statistical tools with response surface methodology. The microemulsion containing miconazole base–2%, oleic acid–5%, Tween 20–40%, PEG 400–20%, and water–33% exhibited a mean droplet size of 119.6 nm, a work of adhesion of 71.98 mN/m, a diffusion coefficient of 2.11·10−5 cm2/s, and together with remarked attributes of two gel-like systems formulated with higher oil concentrations, modeled the final optimization step of microemulsions as potential systems for buccal delivery. Full article
(This article belongs to the Special Issue Advanced Strategies for Sublingual and Buccal Drug Delivery)
Show Figures

Graphical abstract

22 pages, 2892 KiB  
Review
The Evolution of Emerging Nanovesicle Technologies for Enhanced Delivery of Molecules into and across the Skin
by Elka Touitou and Hiba Natsheh
Pharmaceutics 2024, 16(2), 267; https://doi.org/10.3390/pharmaceutics16020267 - 13 Feb 2024
Cited by 1 | Viewed by 1185
Abstract
This review focuses on nanovesicular carriers for enhanced delivery of molecules into and across the skin, from their design to recent emerging technologies. During the last four decades, several approaches have been used aiming to design new nanovesicles, some of them by altering [...] Read more.
This review focuses on nanovesicular carriers for enhanced delivery of molecules into and across the skin, from their design to recent emerging technologies. During the last four decades, several approaches have been used aiming to design new nanovesicles, some of them by altering the properties of the classic phospholipid vesicle, the liposome. Phospholipid nanovesicular systems, including the phospholipid soft vesicles as well as the non-phospholipid vesicular carries, are reviewed. The altered nanovesicles have served in the manufacture of various cosmetic products and have been investigated and used for the treatment of a wide variety of skin conditions. The evolution and recent advances of these nanovesicular technologies are highlighted in this review. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

17 pages, 2401 KiB  
Article
Sample Size Requirements of a Pharmaceutical Material Library: A Case in Predicting Direct Compression Tablet Tensile Strength by Latent Variable Modeling
by Junjie Cao, Haoran Shen, Shuying Zhao, Xiao Ma, Liping Chen, Shengyun Dai, Bing Xu and Yanjiang Qiao
Pharmaceutics 2024, 16(2), 242; https://doi.org/10.3390/pharmaceutics16020242 - 7 Feb 2024
Viewed by 889
Abstract
The material library is an emerging, new data-driven approach for developing pharmaceutical process models. How many materials or samples should be involved in a particular application scenario is unclear, and the impact of sample size on process modeling is worth discussing. In this [...] Read more.
The material library is an emerging, new data-driven approach for developing pharmaceutical process models. How many materials or samples should be involved in a particular application scenario is unclear, and the impact of sample size on process modeling is worth discussing. In this work, the direct compression process was taken as the research object, and the effects of different sample sizes of material libraries on partial least squares (PLS) modeling in the prediction of tablet tensile strength were investigated. A primary material library comprising 45 materials was built. Then, material subsets containing 5 × i (i = 1, 2, 3, …, 8) materials were sampled from the primary material library. Each subset underwent sampling 1000 times to analyze variations in model fitting performance. Both hierarchical sampling and random sampling were employed and compared, with hierarchical sampling implemented with the help of the tabletability classification index d. For each subset, modeling data were organized, incorporating 18 physical properties and tableting pressure as the independent variables and tablet tensile strength as the dependent variable. A series of chemometric indicators was used to assess model performance and find important materials for model training. It was found that the minimum R2 and RMSE values reached their maximum, and the corresponding values were kept almost unchanged when the sample sizes varied from 20 to 45. When the sample size was smaller than 15, the hierarchical sampling method was more reliable in avoiding low-quality few-shot PLS models than the random sampling method. Two important materials were identified as useful for building an initial material library. Overall, this work demonstrated that as the number of materials increased, the model’s reliability improved. It also highlighted the potential for effective few-shot modeling on a small material library by controlling its information richness. Full article
Show Figures

Graphical abstract

21 pages, 3843 KiB  
Review
Different Targeting Ligands-Mediated Drug Delivery Systems for Tumor Therapy
by Shuxin Yan, Jintong Na, Xiyu Liu and Pan Wu
Pharmaceutics 2024, 16(2), 248; https://doi.org/10.3390/pharmaceutics16020248 - 7 Feb 2024
Cited by 1 | Viewed by 2454
Abstract
Traditional tumor treatments have the drawback of harming both tumor cells and normal cells, leading to significant systemic toxic side effects. As a result, there is a pressing need for targeted drug delivery methods that can specifically target cells or tissues. Currently, researchers [...] Read more.
Traditional tumor treatments have the drawback of harming both tumor cells and normal cells, leading to significant systemic toxic side effects. As a result, there is a pressing need for targeted drug delivery methods that can specifically target cells or tissues. Currently, researchers have made significant progress in developing targeted drug delivery systems for tumor therapy using various targeting ligands. This review aims to summarize recent advancements in targeted drug delivery systems for tumor therapy, focusing on different targeting ligands such as folic acid, carbohydrates, peptides, aptamers, and antibodies. The review also discusses the advantages, challenges, and future prospects of these targeted drug delivery systems. Full article
Show Figures

Figure 1

32 pages, 2501 KiB  
Review
Peptide-Mediated Nanocarriers for Targeted Drug Delivery: Developments and Strategies
by Yubo Wang, Lu Zhang, Chen Liu, Yiming Luo and Dengyue Chen
Pharmaceutics 2024, 16(2), 240; https://doi.org/10.3390/pharmaceutics16020240 - 6 Feb 2024
Viewed by 1352
Abstract
Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and [...] Read more.
Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery. This paper reviews peptide-mediated drug delivery systems, focusing on self-assembled peptides and peptide–drug conjugates. It discusses the mechanisms and structural control of self-assembled peptides, the varieties and roles of peptide–drug conjugates, and strategies to augment peptide stability. The review concludes by addressing challenges and future directions. Full article
(This article belongs to the Special Issue Nanosystems for Drug Delivery)
Show Figures

Figure 1

16 pages, 13973 KiB  
Article
3D Printing of Biodegradable Polymeric Microneedles for Transdermal Drug Delivery Applications
by Faisal Khaled Aldawood, Santosh Kumar Parupelli, Abhay Andar and Salil Desai
Pharmaceutics 2024, 16(2), 237; https://doi.org/10.3390/pharmaceutics16020237 - 6 Feb 2024
Cited by 1 | Viewed by 1258
Abstract
Microneedle (MN) technology is an optimal choice for the delivery of drugs via the transdermal route, with a minimally invasive procedure. MN applications are varied from drug delivery, cosmetics, tissue engineering, vaccine delivery, and disease diagnostics. The MN is a biomedical device that [...] Read more.
Microneedle (MN) technology is an optimal choice for the delivery of drugs via the transdermal route, with a minimally invasive procedure. MN applications are varied from drug delivery, cosmetics, tissue engineering, vaccine delivery, and disease diagnostics. The MN is a biomedical device that offers many advantages including but not limited to a painless experience, being time-effective, and real-time sensing. This research implements additive manufacturing (AM) technology to fabricate MN arrays for advanced therapeutic applications. Stereolithography (SLA) was used to fabricate six MN designs with three aspect ratios. The MN array included conical-shaped 100 needles (10 × 10 needle) in each array. The microneedles were characterized using optical and scanning electron microscopy to evaluate the dimensional accuracy. Further, mechanical and insertion tests were performed to analyze the mechanical strength and skin penetration capabilities of the polymeric MN. MNs with higher aspect ratios had higher deformation characteristics suitable for penetration to deeper levels beyond the stratum corneum. MNs with both 0.3 mm and 0.4 mm base diameters displayed consistent force–displacement behavior during a skin-equivalent penetration test. This research establishes guidelines for fabricating polymeric MN for high-accuracy and low-cost 3D printing. Full article
(This article belongs to the Special Issue 3D Printing Technology for Pharmaceutical and Biomedical Application)
Show Figures

Figure 1

36 pages, 1088 KiB  
Review
New and Emerging Oral/Topical Small-Molecule Treatments for Psoriasis
by Elena Carmona-Rocha, Lluís Rusiñol and Lluís Puig
Pharmaceutics 2024, 16(2), 239; https://doi.org/10.3390/pharmaceutics16020239 - 6 Feb 2024
Cited by 1 | Viewed by 2220
Abstract
The introduction of biologic therapies has led to dramatic improvements in the management of moderate-to-severe psoriasis. Even though the efficacy and safety of the newer biologic agents are difficult to match, oral administration is considered an important advantage by many patients. Current research [...] Read more.
The introduction of biologic therapies has led to dramatic improvements in the management of moderate-to-severe psoriasis. Even though the efficacy and safety of the newer biologic agents are difficult to match, oral administration is considered an important advantage by many patients. Current research is focused on the development of oral therapies with improved efficacy and safety compared with available alternatives, as exemplified by deucravacitinib, the first oral allosteric Tyk2 inhibitor approved for the treatment of moderate to severe psoriasis in adults. Recent advances in our knowledge of psoriasis pathogenesis have also led to the development of targeted topical molecules, mostly focused on intracellular signaling pathways such as AhR, PDE-4, and Jak-STAT. Tapinarof (an AhR modulator) and roflumilast (a PDE-4 inhibitor) have exhibited favorable efficacy and safety outcomes and have been approved by the FDA for the topical treatment of plaque psoriasis. This revision focuses on the most recent oral and topical therapies available for psoriasis, especially those that are currently under evaluation and development for the treatment of psoriasis. Full article
Show Figures

Figure 1

19 pages, 4570 KiB  
Article
Rutin/Sulfobutylether-β-Cyclodextrin as a Promising Therapeutic Formulation for Ocular Infection
by Federica De Gaetano, Martina Pastorello, Venerando Pistarà, Antonio Rescifina, Fatima Margani, Vincenzina Barbera, Cinzia Anna Ventura and Andreana Marino
Pharmaceutics 2024, 16(2), 233; https://doi.org/10.3390/pharmaceutics16020233 - 5 Feb 2024
Viewed by 866
Abstract
Ocular pathologies present significant challenges to achieving effective therapeutic results due to various anatomical and physiological barriers. Natural products such as flavonoids, alone or in association with allopathic drugs, present many therapeutic actions including anticancer, anti-inflammatory, and antibacterial action. However, their clinical employment [...] Read more.
Ocular pathologies present significant challenges to achieving effective therapeutic results due to various anatomical and physiological barriers. Natural products such as flavonoids, alone or in association with allopathic drugs, present many therapeutic actions including anticancer, anti-inflammatory, and antibacterial action. However, their clinical employment is challenging for scientists due to their low water solubility. In this study, we designed a liquid formulation based on rutin/sulfobutylether-β-cyclodextrin (RTN/SBE-β-CD) inclusion complex for treating ocular infections. The correct stoichiometry and the accurate binding constant were determined by employing SupraFit software (2.5.120) in the UV-vis titration experiment. A deep physical–chemical characterization of the RTN/SBE-β-CD inclusion complex was also performed; it confirmed the predominant formation of a stable complex (Kc, 9660 M−1) in a 1:1 molar ratio, with high water solubility that was 20 times (2.5 mg/mL) higher than the free molecule (0.125 mg/mL), permitting the dissolution of the solid complex within 30 min. NMR studies revealed the involvement of the bicyclic flavonoid moiety in the complexation, which was also confirmed by molecular modeling studies. In vitro, the antibacterial and antibiofilm activity of the formulation was assayed against Staphylococcus aureus and Pseudomonas aeruginosa strains. The results demonstrated a significant activity of the formulation than that of the free molecules. Full article
(This article belongs to the Topic New Challenges in Ocular Drug Delivery)
Show Figures

Graphical abstract

29 pages, 3835 KiB  
Article
Simultaneously Predicting the Pharmacokinetics of CES1-Metabolized Drugs and Their Metabolites Using Physiologically Based Pharmacokinetic Model in Cirrhosis Subjects
by Xin Luo, Zexin Zhang, Ruijing Mu, Guangyu Hu, Li Liu and Xiaodong Liu
Pharmaceutics 2024, 16(2), 234; https://doi.org/10.3390/pharmaceutics16020234 - 5 Feb 2024
Viewed by 925
Abstract
Hepatic carboxylesterase 1 (CES1) metabolizes numerous prodrugs into active ingredients or direct-acting drugs into inactive metabolites. We aimed to develop a semi-physiologically based pharmacokinetic (semi-PBPK) model to simultaneously predict the pharmacokinetics of CES1 substrates and their active metabolites in liver cirrhosis (LC) patients. [...] Read more.
Hepatic carboxylesterase 1 (CES1) metabolizes numerous prodrugs into active ingredients or direct-acting drugs into inactive metabolites. We aimed to develop a semi-physiologically based pharmacokinetic (semi-PBPK) model to simultaneously predict the pharmacokinetics of CES1 substrates and their active metabolites in liver cirrhosis (LC) patients. Six prodrugs (enalapril, benazepril, cilazapril, temocapril, perindopril and oseltamivir) and three direct-acting drugs (flumazenil, pethidine and remimazolam) were selected. Parameters such as organ blood flows, plasma-binding protein concentrations, functional liver volume, hepatic enzymatic activity, glomerular filtration rate (GFR) and gastrointestinal transit rate were integrated into the simulation. The pharmacokinetic profiles of these drugs and their active metabolites were simulated for 1000 virtual individuals. The developed semi-PBPK model, after validation in healthy individuals, was extrapolated to LC patients. Most of the observations fell within the 5th and 95th percentiles of simulations from 1000 virtual patients. The estimated AUC and Cmax were within 0.5–2-fold of the observed values. The sensitivity analysis showed that the decreased plasma exposure of active metabolites due to the decreased CES1 was partly attenuated by the decreased GFR. Conclusion: The developed PBPK model successfully predicted the pharmacokinetics of CES1 substrates and their metabolites in healthy individuals and LC patients, facilitating tailored dosing of CES1 substrates in LC patients. Full article
Show Figures

Figure 1

22 pages, 8785 KiB  
Article
Development of Biotinylated Liposomes Encapsulating Metformin for Therapeutic Targeting of Inflammation-Based Diseases
by Giorgia Ailuno, Sara Baldassari, Alice Balboni, Sara Pastorino, Guendalina Zuccari, Katia Cortese, Federica Barbieri, Giuliana Drava, Tullio Florio and Gabriele Caviglioli
Pharmaceutics 2024, 16(2), 235; https://doi.org/10.3390/pharmaceutics16020235 - 5 Feb 2024
Cited by 1 | Viewed by 894
Abstract
Inflammation is a physiological response to a damaging stimulus but sometimes can be the cause of the onset of neurodegenerative diseases, atherosclerosis, and cancer. These pathologies are characterized by the overexpression of inflammatory markers like endothelial adhesion molecules, such as Vascular Cell Adhesion [...] Read more.
Inflammation is a physiological response to a damaging stimulus but sometimes can be the cause of the onset of neurodegenerative diseases, atherosclerosis, and cancer. These pathologies are characterized by the overexpression of inflammatory markers like endothelial adhesion molecules, such as Vascular Cell Adhesion Molecule-1 (VCAM-1). In the present work, the development of liposomes for therapeutic targeted delivery to inflamed endothelia is described. The idea is to exploit a three-step pretargeting system based on the biotin–avidin high-affinity interaction: the first step involves a previously described biotin derivative bearing a VCAM-1 binding peptide; in the second step, the avidin derivative NeutrAvidinTM, which strongly binds to the biotin moiety, is injected; the final step is the administration of biotinylated liposomes that would bind to NeutravidinTM immobilized onto VCAM-1 overexpressing endothelium. Stealth biotinylated liposomes, prepared via the thin film hydration method followed by extrusion and purification via size exclusion chromatography, have been thoroughly characterized for their chemico-physical and morphological features and loaded with metformin hydrochloride, a potential anti-inflammatory agent. The three-step system, tested in vitro on different cell lines via confocal microscopy, FACS analysis and metformin uptake, has proved its suitability for therapeutic applications. Full article
(This article belongs to the Special Issue Novel Technological Approaches for Targeted Drug Delivery Systems)
Show Figures

Figure 1

25 pages, 27127 KiB  
Article
Nanogallium-poly(L-lactide) Composites with Contact Antibacterial Action
by Mario Kurtjak, Marjeta Maček Kržmanc, Matjaž Spreitzer and Marija Vukomanović
Pharmaceutics 2024, 16(2), 228; https://doi.org/10.3390/pharmaceutics16020228 - 4 Feb 2024
Viewed by 1284
Abstract
In diverse biomedical and other applications of polylactide (PLA), its bacterial contamination and colonization are unwanted. For this reason, this biodegradable polymer is often combined with antibacterial agents or fillers. Here, we present a new solution of this kind. Through the process of [...] Read more.
In diverse biomedical and other applications of polylactide (PLA), its bacterial contamination and colonization are unwanted. For this reason, this biodegradable polymer is often combined with antibacterial agents or fillers. Here, we present a new solution of this kind. Through the process of simple solvent casting, we developed homogeneous composite films from 28 ± 5 nm oleic-acid-capped gallium nanoparticles (Ga NPs) and poly(L-lactide) and characterized their detailed morphology, crystallinity, aqueous wettability, optical and thermal properties. The addition of Ga NPs decreased the ultraviolet transparency of the films, increased their hydrophobicity, and enhanced the PLA structural ordering during solvent casting. Albeit, above the glass transition, there is an interplay of heterogeneous nucleation and retarded chain mobility through interfacial interactions. The gallium content varied from 0.08 to 2.4 weight %, and films with at least 0.8% Ga inhibited the growth of Pseudomonas aeruginosa PAO1 in contact, while 2.4% Ga enhanced the effect of the films to be bactericidal. This contact action was a result of unwrapping the top film layer under biological conditions and the consequent bacterial contact with the exposed Ga NPs on the surface. All the tested films showed good cytocompatibility with human HaCaT keratinocytes and enabled the adhesion and growth of these skin cells on their surfaces when coated with poly(L-lysine). These properties make the nanogallium-polyl(L-lactide) composite a promising new polymer-based material worthy of further investigation and development for biomedical and pharmaceutical applications. Full article
(This article belongs to the Special Issue Biopolymers for Biomedical and Pharmaceutical Applications)
Show Figures

Graphical abstract

28 pages, 10382 KiB  
Review
Niosomes: Composition, Formulation Techniques, and Recent Progress as Delivery Systems in Cancer Therapy
by Sergio Liga, Cristina Paul, Elena-Alina Moacă and Francisc Péter
Pharmaceutics 2024, 16(2), 223; https://doi.org/10.3390/pharmaceutics16020223 - 4 Feb 2024
Cited by 1 | Viewed by 2222
Abstract
Niosomes are vesicular nanocarriers, biodegradable, relatively non-toxic, stable, and inexpensive, that provide an alternative for lipid-solid carriers (e.g., liposomes). Niosomes may resolve issues related to the instability, fast degradation, bioavailability, and insolubility of different drugs or natural compounds. Niosomes can be very efficient [...] Read more.
Niosomes are vesicular nanocarriers, biodegradable, relatively non-toxic, stable, and inexpensive, that provide an alternative for lipid-solid carriers (e.g., liposomes). Niosomes may resolve issues related to the instability, fast degradation, bioavailability, and insolubility of different drugs or natural compounds. Niosomes can be very efficient potential systems for the specific delivery of anticancer, antioxidant, anti-inflammatory, antimicrobial, and antibacterial molecules. This review aims to present an overview of their composition, the most common formulation techniques, as well as of recent utilizations as delivery systems in cancer therapy. Full article
Show Figures

Figure 1

16 pages, 3187 KiB  
Article
Development of Ciprofloxacin-Loaded Electrospun Yarns of Application Interest as Antimicrobial Surgical Suture Materials
by Jorge Teno, Maria Pardo-Figuerez, Zoran Evtoski, Cristina Prieto, Luis Cabedo and Jose M. Lagaron
Pharmaceutics 2024, 16(2), 220; https://doi.org/10.3390/pharmaceutics16020220 - 3 Feb 2024
Cited by 1 | Viewed by 1054
Abstract
Surgical site infections (SSI) occur very frequently during post-operative procedures and are often treated with oral antibiotics, which may cause some side effects. This type of infection could be avoided by encapsulating antimicrobial/anti-inflammatory drugs within the surgical suture materials so that they can [...] Read more.
Surgical site infections (SSI) occur very frequently during post-operative procedures and are often treated with oral antibiotics, which may cause some side effects. This type of infection could be avoided by encapsulating antimicrobial/anti-inflammatory drugs within the surgical suture materials so that they can more efficiently act on the site of action during wound closure, avoiding post-operative bacterial infection and spreading. This work was aimed at developing novel electrospun bio-based anti-infective fibre-based yarns as novel suture materials for preventing surgical site infections. For this, yarns based on flying intertwined microfibres (1.95 ± 0.22 µm) were fabricated in situ during the electrospinning process using a specially designed yarn collector. The electrospun yarn sutures (diameter 300–500 µm) were made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with different contents of 3HV units and contained ciprofloxacin hydrochloride (CPX) as the antimicrobial active pharmaceutical ingredient (API). The yarns were then analysed by scanning electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray scattering, differential scanning calorimetry, and in vitro drug release. The yarns were also analysed in terms of antimicrobial and mechanical properties. The material characterization indicated that the varying polymer molecular architecture affected the attained polymer crystallinity, which was correlated with the different drug-eluting profiles. Moreover, the materials exhibited the inherent stiff behaviour of PHBV, which was further enhanced by the API. Lastly, all the yarn sutures presented antimicrobial properties for a time release of 5 days against both Gram-positive and Gram-negative pathogenic bacteria. The results highlight the potential of the developed antimicrobial electrospun yarns in this study as potential innovative suture materials to prevent surgical infections. Full article
(This article belongs to the Special Issue Novel Technologies for Buccal and Transdermal Drug Delivery)
Show Figures

Graphical abstract

26 pages, 2763 KiB  
Review
Recent Technological and Intellectual Property Trends in Antibody–Drug Conjugate Research
by Youngbo Choi, Youbeen Choi and Surin Hong
Pharmaceutics 2024, 16(2), 221; https://doi.org/10.3390/pharmaceutics16020221 - 3 Feb 2024
Viewed by 2083
Abstract
Antibody–drug conjugate (ADC) therapy, an advanced therapeutic technology comprising antibodies, chemical linkers, and cytotoxic payloads, addresses the limitations of traditional chemotherapy. This study explores key elements of ADC therapy, focusing on antibody development, linker design, and cytotoxic payload delivery. The global rise in [...] Read more.
Antibody–drug conjugate (ADC) therapy, an advanced therapeutic technology comprising antibodies, chemical linkers, and cytotoxic payloads, addresses the limitations of traditional chemotherapy. This study explores key elements of ADC therapy, focusing on antibody development, linker design, and cytotoxic payload delivery. The global rise in cancer incidence has driven increased investment in anticancer agents, resulting in significant growth in the ADC therapy market. Over the past two decades, notable progress has been made, with approvals for 14 ADC treatments targeting various cancers by 2022. Diverse ADC therapies for hematologic malignancies and solid tumors have emerged, with numerous candidates currently undergoing clinical trials. Recent years have seen a noteworthy increase in ADC therapy clinical trials, marked by the initiation of numerous new therapies in 2022. Research and development, coupled with patent applications, have intensified, notably from major companies like Pfizer Inc. (New York, NY, USA), AbbVie Pharmaceuticals Inc. (USA), Regeneron Pharmaceuticals Inc. (Tarrytown, NY, USA), and Seagen Inc. (Bothell, WA, USA). While ADC therapy holds great promise in anticancer treatment, challenges persist, including premature payload release and immune-related side effects. Ongoing research and innovation are crucial for advancing ADC therapy. Future developments may include novel conjugation methods, stable linker designs, efficient payload delivery technologies, and integration with nanotechnology, driving the evolution of ADC therapy in anticancer treatment. Full article
(This article belongs to the Special Issue Nano Drug Delivery System, 2nd Edition)
Show Figures

Figure 1

22 pages, 7119 KiB  
Review
Delivery Strategies for Colchicine as a Critical Dose Drug: Reducing Toxicity and Enhancing Efficacy
by Yaran Lei, Yulu Yang, Guobao Yang, Ao Li, Yang Yang, Yuli Wang and Chunsheng Gao
Pharmaceutics 2024, 16(2), 222; https://doi.org/10.3390/pharmaceutics16020222 - 3 Feb 2024
Viewed by 1366
Abstract
Colchicine (COL), a widely used natural drug, has potent anti-inflammatory effects; however, as a narrow therapeutic index drug, its clinical application is limited by its serious gastrointestinal adverse effects, and only oral formulations are currently marketed worldwide. Recent studies have shown that transdermal, [...] Read more.
Colchicine (COL), a widely used natural drug, has potent anti-inflammatory effects; however, as a narrow therapeutic index drug, its clinical application is limited by its serious gastrointestinal adverse effects, and only oral formulations are currently marketed worldwide. Recent studies have shown that transdermal, injection, and oral drug delivery are the three main delivery strategies for COL. This article elaborates on the research progress of different delivery strategies in terms of toxicity reduction and efficacy enhancement, depicting that the transdermal drug delivery route can avoid the first-pass effect and the traumatic pain associated with the oral and injection routes, respectively. Therefore, such a dosage form holds a significant promise that requires the development of further research to investigate effective COL delivery formulations. In addition, the permeation-promoting technologies utilized for transdermal drug delivery systems are briefly discussed. This article is expected to provide scientific ideas and theoretical guidance for future research and the exploration of COL delivery strategies. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems of Phytomedicines)
Show Figures

Figure 1

25 pages, 5714 KiB  
Review
Versatile Peptide-Based Nanosystems for Photodynamic Therapy
by Qiuyan Li, Ruiqi Ming, Lili Huang and Ruoyu Zhang
Pharmaceutics 2024, 16(2), 218; https://doi.org/10.3390/pharmaceutics16020218 - 2 Feb 2024
Cited by 8 | Viewed by 1026
Abstract
Photodynamic therapy (PDT) has become an important therapeutic strategy because it is highly controllable, effective, and does not cause drug resistance. Moreover, precise delivery of photosensitizers to tumor lesions can greatly reduce the amount of drug administered and optimize therapeutic outcomes. As alternatives [...] Read more.
Photodynamic therapy (PDT) has become an important therapeutic strategy because it is highly controllable, effective, and does not cause drug resistance. Moreover, precise delivery of photosensitizers to tumor lesions can greatly reduce the amount of drug administered and optimize therapeutic outcomes. As alternatives to protein antibodies, peptides have been applied as useful targeting ligands for targeted biomedical imaging, drug delivery and PDT. In addition, other functionalities of peptides such as stimuli responsiveness, self-assembly, and therapeutic activity can be integrated with photosensitizers to yield versatile peptide-based nanosystems for PDT. In this article, we start with a brief introduction to PDT and peptide-based nanosystems, followed by more detailed descriptions about the structure, property, and architecture of peptides as background information. Finally, the most recent advances in peptide-based nanosystems for PDT are emphasized and summarized according to the functionalities of peptide in the system to reveal the design and development principle in different therapeutic circumstances. We hope this review could provide useful insights and valuable reference for the development of peptide-based nanosystems for PDT. Full article
Show Figures

Graphical abstract

17 pages, 2732 KiB  
Review
The Design, Synthesis and Mechanism of Action of Paxlovid, a Protease Inhibitor Drug Combination for the Treatment of COVID-19
by Miklós Bege and Anikó Borbás
Pharmaceutics 2024, 16(2), 217; https://doi.org/10.3390/pharmaceutics16020217 - 2 Feb 2024
Cited by 1 | Viewed by 1799
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented an enormous challenge to health care systems and medicine. As a result of global research efforts aimed at preventing and effectively treating SARS-CoV-2 infection, vaccines with fundamentally new mechanisms [...] Read more.
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented an enormous challenge to health care systems and medicine. As a result of global research efforts aimed at preventing and effectively treating SARS-CoV-2 infection, vaccines with fundamentally new mechanisms of action and some small-molecule antiviral drugs targeting key proteins in the viral cycle have been developed. The most effective small-molecule drug approved to date for the treatment of COVID-19 is PaxlovidTM, which is a combination of two protease inhibitors, nirmatrelvir and ritonavir. Nirmatrelvir is a reversible covalent peptidomimetic inhibitor of the main protease (Mpro) of SARS-CoV-2, which enzyme plays a crucial role in viral reproduction. In this combination, ritonavir serves as a pharmacokinetic enhancer, it irreversibly inhibits the cytochrome CYP3A4 enzyme responsible for the rapid metabolism of nirmatrelvir, thereby increasing the half-life and bioavailability of nirmatrelvir. In this tutorial review, we summarize the development and pharmaceutical chemistry aspects of Paxlovid, covering the evolution of protease inhibitors, the warhead design, synthesis and the mechanism of action of nirmatrelvir, as well as the synthesis of ritonavir and its CYP3A4 inhibition mechanism. The efficacy of Paxlovid to novel virus mutants is also overviewed. Full article
(This article belongs to the Special Issue Recent Advances in Prevention and Treatment of Infectious Diseases)
Show Figures

Figure 1

14 pages, 5326 KiB  
Article
Piperacillin/Tazobactam Co-Delivery by Micellar Ionic Conjugate Systems Carrying Pharmaceutical Anions and Encapsulated Drug
by Katarzyna Niesyto, Aleksy Mazur and Dorota Neugebauer
Pharmaceutics 2024, 16(2), 198; https://doi.org/10.3390/pharmaceutics16020198 - 30 Jan 2024
Viewed by 920
Abstract
Previously obtained amphiphilic graft copolymers based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA) ionic liquid were used as the matrices of three types of nanocarriers, i.e., conjugates with ionic piperacillin (PIP) and micelles with tazobactam (TAZ), which represented single systems, and dual systems bearing PIP anions [...] Read more.
Previously obtained amphiphilic graft copolymers based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA) ionic liquid were used as the matrices of three types of nanocarriers, i.e., conjugates with ionic piperacillin (PIP) and micelles with tazobactam (TAZ), which represented single systems, and dual systems bearing PIP anions and encapsulated TAZ for co-delivery. The exchange of Cl anions in TMAMA units with PIP ones resulted in a yield of 45.6–72.7 mol.%. The self-assembling properties were confirmed by the critical micelle concentration (CMC), which, after ion exchange, increased significantly (from 0.011–0.020 mg/mL to 0.041–0.073 mg/mL). The amphiphilic properties were beneficial for TAZ encapsulation to reach drug loading contents (DLCs) in the ranges of 37.2–69.5 mol.% and 50.4–80.4 mol.% and to form particles with sizes of 97–319 nm and 24–192 nm in the single and dual systems, respectively. In vitro studies indicated that the ionically conjugated drug (PIP) was released in quantities of 66–81% (7.8–15.0 μg/mL) from single-drug systems and 21–25% (2.6–3.9 μg/mL) from dual-drug systems. The release of encapsulated TAZ was more efficient, achieving 47–98% (7.5–9.0 μg/mL) release from the single systems and 47–69% (9.6–10.4 μg/mL) release from the dual ones. Basic cytotoxicity studies showed non-toxicity of the polymer matrices, while the introduction of the selected drugs induced cytotoxicity against normal human bronchial epithelial cells (BEAS-2B) with the increase in concentration. Full article
Show Figures

Figure 1

34 pages, 2610 KiB  
Review
Exploring Amino Acid Transporters as Therapeutic Targets for Cancer: An Examination of Inhibitor Structures, Selectivity Issues, and Discovery Approaches
by Sebastian Jakobsen and Carsten Uhd Nielsen
Pharmaceutics 2024, 16(2), 197; https://doi.org/10.3390/pharmaceutics16020197 - 30 Jan 2024
Cited by 1 | Viewed by 1560
Abstract
Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the [...] Read more.
Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the growth and development of cancer. Naturally, this has made amino acid transporters a novel target of interest for the development of new anticancer drugs. Many attempts have been made to develop inhibitors of amino acid transporters to slow down cancer cell growth, and some have even reached clinical trials. The purpose of this review is to help organize the available information on the efforts to discover amino acid transporter inhibitors by focusing on the amino acid transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), xCT (SLC7A11), SNAT1 (SLC38A1), SNAT2 (SLC38A2), and PAT1 (SLC36A1). We discuss the function of the transporters, their implication in cancer, their known inhibitors, issues regarding selective inhibitors, and the efforts and strategies of discovering inhibitors. The goal is to encourage researchers to continue the search and development within the field of cancer treatment research targeting amino acid transporters. Full article
Show Figures

Figure 1

Back to TopTop